【題目】為了解學(xué)生對中國民族樂器的喜愛情況,某校在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,要求學(xué)生在古箏、二胡、竹笛、揚琴、琵琶五個選項中,選取自己喜愛的一種樂器(必選且只選一種),學(xué)校將收集到的調(diào)查結(jié)果適當(dāng)整理后,繪制成如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息回答下列問題:

1)本次調(diào)查共抽取了多少名學(xué)生?

2)通過計算補全條形統(tǒng)計圖;

3)若該校共有2020名學(xué)生,請你估計該校喜愛竹笛的學(xué)生有多少名.

【答案】1)本次調(diào)查共抽取了 200名學(xué)生;(2)補圖見解析;(3303名.

【解析】

1)根據(jù)古箏的人數(shù)除以古箏所占的百分比即可求出參與調(diào)查的總?cè)藬?shù);

2)根據(jù)條形統(tǒng)計圖,用抽取的總?cè)藬?shù)減去古箏、竹笛、揚琴、琵琶的人數(shù)即可得出二胡的人數(shù),據(jù)此補全統(tǒng)計圖即可;

3)總?cè)藬?shù)乘以喜愛竹笛的學(xué)生所占抽查人數(shù)的百分比即可.

解:(180÷40%200(名)

∴本次調(diào)查共抽取了 200 名學(xué)生;

2200﹣(80+30+20+10)=60(名)

∴本次調(diào)查選取二胡的學(xué)生有 60 名;

補全條形統(tǒng)計圖,如圖所示:

3(名)

∴估計該校喜愛竹笛的學(xué)生有 303 名.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點OAOOC,BOOD,且∠AOB2∠OAD.

(1)求證:四邊形ABCD是矩形;

(2)∠AOB∶∠ODC4∶3,求∠ADO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強從如圖所示的二次函數(shù)yax2+bx+c的圖象中,觀察得出了下面五條結(jié)論:你認(rèn)為其中正確結(jié)論的個數(shù)有( 。

1a0;(2b0;(3ab+c0;(42a+b0

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面內(nèi)的點和點,給出如下定義:點為平面內(nèi)一點,若點使得是以為頂角且小于90°的等腰三角形,則稱點是點關(guān)于點的銳角等腰點.如圖,點是點關(guān)于點的銳角等腰點.

在平面直角坐標(biāo)系xOy中,點O為坐標(biāo)原點

(1)已知點,在點, ,中,是點關(guān)于點的銳角等腰點的是 ;

(2)已知點,點在直線上,若點是點關(guān)于點的銳角等腰點,求實數(shù)的取值范圍.

(3) 軸上的動點,,,點是以點為圓心,2為半徑的圓上一動點.且滿足,若直線上存在點關(guān)于點的銳角等腰點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘南山院士在談到防護(hù)新型冠狀病毒肺炎時說:我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運動,少熬夜.某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機(jī)從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行統(tǒng)計、分析,過程如下:

收集數(shù)據(jù)

甲小區(qū):80 85 90 95 90 95 90 65 75 100 90 70 95 90 80 80 90 95 60 100

乙小區(qū):60 80 95 80 90 65 80 85 85 100 80 95 90 80 90 70 80 90 75 100

整理數(shù)據(jù)

成績(分)

小區(qū)

甲小區(qū)

乙小區(qū)

分析數(shù)據(jù)

數(shù)據(jù)名稱

計量小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

乙小區(qū)

應(yīng)用數(shù)據(jù)

1)填空:=______,=______;

2)若乙小區(qū)共有1200人參與答卷,請估計乙小區(qū)成績大于90分的人數(shù);

3)社區(qū)管理人員看完統(tǒng)計數(shù)據(jù),認(rèn)為甲小區(qū)對新型冠狀病毒肺炎防護(hù)知識掌握更好,請你寫出社區(qū)管理人員的理由;為了更好地宣傳新型冠狀病毒肺炎防護(hù)知識,社區(qū)管理人員決定從甲、乙小區(qū)的4個滿分試卷中隨機(jī)抽取兩份試卷對小區(qū)居民進(jìn)行網(wǎng)絡(luò)宣傳講解培訓(xùn),請用列表格或畫樹狀圖的方法求出甲、乙小區(qū)各抽到一份滿分試卷的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“圓材埋壁”是我國古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學(xué)語言表述是:“CD的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為(

A.12B.13C.24D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在離水面高度AC為2米的岸上有人用繩子拉船靠岸,開始時繩子與水面的夾角為30°,此人以每秒05米的速度收繩子

問:1未開始收繩子的時候,圖中繩子BC的長度是多少米?

2收繩2秒后船離岸邊多少米?結(jié)果保留根號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有甲種原料,乙種原料,計劃用這兩種原料生產(chǎn)、兩種產(chǎn)品共40件.生產(chǎn)每件種產(chǎn)品需甲種原料,乙種原料,可獲利潤900元;生產(chǎn)每件種產(chǎn)品需甲種原料,乙種原料,可獲利潤1100元.設(shè)安排生產(chǎn)種產(chǎn)品(為非負(fù)整數(shù))

(I)根據(jù)題意,填寫下表:

甲(

乙(

件數(shù)(件)

(Ⅱ) 安排生產(chǎn)、兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由:

(Ⅲ) 設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤元,將表示為的函數(shù),并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1當(dāng)k=1,b=1時,拋物線C:y=ax2+bx+1的頂點在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實數(shù)k取何值,直線r與拋物線C都只有一個交點;

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點,過點PPQy軸且與直線y=2交于點Q,O為原點,

求證:OP=PQ.

查看答案和解析>>

同步練習(xí)冊答案