【題目】如圖1,A08)、B2a)在直線y=﹣2x+b上,反比例函數(shù)yx0)的圖象經(jīng)過(guò)點(diǎn)B

1)求ak的值;

2)將線段AB向右平移3個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)線段CD,連接AC、BD.如圖2,過(guò)點(diǎn)DDEx軸于點(diǎn)F,交反比例函數(shù)圖象與點(diǎn)E,求的值.

【答案】1a4k8;(2

【解析】

1)先將點(diǎn)A坐標(biāo)代入直線AB的解析式中,求出b,進(jìn)而求出點(diǎn)B坐標(biāo),再將點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式中即可得出結(jié)論;
2)先由點(diǎn)B向右平移3個(gè)單位確定出點(diǎn)D的坐標(biāo),進(jìn)而求出點(diǎn)E坐標(biāo),于是求出DE,EF,即可得出結(jié)論.

解:(1點(diǎn)A0,8)在直線y=﹣2x+b上,

2×0+b8,

b8,

直線AB的解析式為y=﹣2x+8,

將點(diǎn)B2a)代入直線AB的解析式y=﹣2x+8中,得﹣2×2+8a

a4,

B2,4),

B2,4)代入反比例函數(shù)解析式yx0)中,得kxy2×48

a4k8;

2)由(1)知,B24),k8,

反比例函數(shù)解析式為y

將線段AB向右平移3個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)線段CD

D2+3,4),

即:D5,4),

DFx軸于點(diǎn)F,交反比例函數(shù)y的圖象于點(diǎn)E,

∴E的坐標(biāo)是E5),

DE4,EF,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,已知 ADAB.在邊AD上取點(diǎn)E,連結(jié)CE.過(guò)點(diǎn)EEFCE,與邊AB的延長(zhǎng)線交于點(diǎn)F

1)證明:AEF∽△DCE

2)若AB=4,AE=6,AD=14,求線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)將寬為3cm、長(zhǎng)為ncm的長(zhǎng)方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長(zhǎng)是正整數(shù)且個(gè)數(shù)最少.例如,當(dāng)n5cm時(shí),此長(zhǎng)方形可分割成如右圖的4個(gè)小正方形.

請(qǐng)回答下列問(wèn)題:

1n16時(shí),可分割成幾個(gè)小正方形?

2)當(dāng)長(zhǎng)方形被分割成20個(gè)小正方形時(shí),求n所有可能的值;

3)一般地,n3時(shí),此長(zhǎng)方形可分割成多少個(gè)小正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)AB,CD都在這些小正方形上,ABCD相交于點(diǎn)O,則tanAOD等于( 。

A. B. 2C. 1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,正方形ABCD,∠EAF45°

1)如圖1,當(dāng)點(diǎn)EF分別在邊BC,CD上,連接EF,求證:EFBE+DF;

2)如圖2,點(diǎn)M,N分別在邊AB,CD上,且BNDM,當(dāng)點(diǎn)EF分別在BM,DN上,連接EF,請(qǐng)?zhí)骄烤段EFBE,DF之間滿足的數(shù)量關(guān)系,并加以證明;

3)如圖3,當(dāng)點(diǎn)E,F分別在對(duì)角線BD,邊CD上,若FC2,則BE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正的邊在直線上,兩條距離為的平行直線垂直于直線,同時(shí)向右移動(dòng)(的起始位置在點(diǎn)),速度均為每秒個(gè)單位,運(yùn)動(dòng)時(shí)間為(秒),直到到達(dá)點(diǎn)停止,在向右移動(dòng)的過(guò)程中,記夾在間的部分的面積為,則關(guān)于的函數(shù)圖象大致為( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AB為直徑作半圓.點(diǎn)D在弧上(不與A,C重合),點(diǎn)EAB上,且點(diǎn)D.E關(guān)于AC對(duì)稱(chēng). 給出下列結(jié)論:①若∠ACE=20°,則∠BAC=25°;②若BC=3,AC=4,則;給出下列判斷,正確的是(

A.①②都對(duì)B.①②都錯(cuò)C.①對(duì)②錯(cuò)D.①錯(cuò)②對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

1)證明:無(wú)論m取何值,函數(shù)圖象與x軸都有兩個(gè)不相同的交點(diǎn);

2)當(dāng)圖象的對(duì)稱(chēng)軸為直線x=3時(shí),求它與x軸兩交點(diǎn)及頂點(diǎn)所構(gòu)成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案