【題目】如圖,在RtABC的紙片中,∠C90°,AC5AB13.點D在邊BC上,以AD為折痕將△ADB折疊得到△ADB′,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是___

【答案】7

【解析】

由勾股定理可以求出BC的長,由折疊可知對應(yīng)邊相等,對應(yīng)角相等,當△DEB′為直角三角形時,可以分為兩種情況進行考慮,分別利用勾股定理可求出BD的長.

RtABC中,,

1)當∠EDB′=90°時,如圖1,

過點B′作BFAC,交AC的延長線于點F,

由折疊得:ABAB′=13,BDBDCF,

設(shè)BDx,則BDCFx,BFCD12x,

RtAFB′中,由勾股定理得:

,

即:x27x0,解得:x10(舍去),x27,

因此,BD7

2)當∠DEB′=90°時,如圖2,此時點E與點C重合,

由折疊得:ABAB′=13,則BC1358,

設(shè)BDx,則BDx,CD12x,

中,由勾股定理得:,解得:,

因此

故答案為:7

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于A(﹣1,0)、B3,0)兩點,與y軸交于點C0,3),點D在拋物線上且橫坐標為2

1)求這條拋物線的表達式;

2)將該拋物線向下平移,使得新拋物線的頂點Gx軸上.原拋物線上一點M平移后的對應(yīng)點為點N,如果△AMN是以MN為底邊的等腰三角形,求點N的坐標;

3)若點P為拋物線上第一象限內(nèi)的動點,過點BBEOP,垂足為E,點Qy軸上的一個動點,連接QE、QD,試求QE+QD的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家為了推進教育均衡發(fā)展,在鄉(xiāng)鎮(zhèn)中心學校開設(shè)的體育選修課有A﹣籃球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,學生可根據(jù)自己的愛好選修一門,學校張老師對某班全班同學的選課情況進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖):

1)求出該班的總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求出“足球”在扇形統(tǒng)計圖中的圓心角是多少度;

3)若該班所在的年級共有1200人,請估計選籃球的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如今很多初中生喜歡購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:白開水,B:瓶裝礦泉水,C:碳酸飲料,D:非碳酸飲料,根據(jù)統(tǒng)計結(jié)果繪制如下兩個不完整的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)這個班級有   名同學;并補全條形統(tǒng)計圖;

(2)若該班同學每人每天只飲用一種飲品(每種僅限一瓶,價格如表),則該班同學每天用于飲品的人均花費是多少元?

(3)在飲用白開水的同學中有4名班委干部,為了養(yǎng)成良好的生活習慣,班主任決定在這4名班委干部(其中有兩位班長記為A,B,其余兩位記為C,D)中隨機抽取2名作為良好習慣監(jiān)督員,請用列表法或畫樹狀圖的方法,求出恰好抽到2名班長的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十一期間,老張在某商場購物后,參加了出口處的抽獎活動.抽獎規(guī)則如下:每張發(fā)票可摸球一次,每次從裝有大小形狀都相同的1個白球和2個紅球的盒子中,隨機摸出一個球,若摸出的是白球,則獲得一份獎品;若摸出的是紅球,則不獲獎.

1)求每次摸球中獎的概率;

2)老張想我手中有兩張發(fā)票,那么中獎的概率就翻了一倍.”你認為老張的想法正確嗎?用列表法或畫樹形圖分析說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)yx+的圖象與性質(zhì)進行了探究.

下面是小明的探究過程,請補充完整:

1)函數(shù)yx+的自變量x的取值范圍是   

2)下表列出了yx的幾組對應(yīng)值,請寫出m,n的值:m   n   ;

3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

4)結(jié)合函數(shù)的圖象,請完成:

①當y=﹣時,x   

②寫出該函數(shù)的一條性質(zhì)   

③若方程x+t有兩個不相等的實數(shù)根,則t的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,OAB邊上的點,以O為圓心,OB為半輕的⊙OAC相切于點D,BD平分∠ABC,∠ABC60°

(1)求∠C的度數(shù);

(2)若圓的半徑OB2,求線段CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BA延長線上一點,E是AC的中點.

(1)利用尺規(guī)作出∠DAC的平分線AM,連接BE并延長交AM于點F,(要求在圖中標明相應(yīng)字母,保留作圖痕跡,不寫作法);

(2)試判斷AF與BC有怎樣的位置關(guān)系與數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+m1x+m的對稱軸為x,請你解答下列問題:

1m   ,拋物線與x軸的交點為   

2x取什么值時,y的值隨x的增大而減?

3x取什么值時,y0?

查看答案和解析>>

同步練習冊答案