【題目】如圖(1)是一款手機(jī)支架,忽略支管的粗細(xì),得到它的簡(jiǎn)化結(jié)構(gòu)圖如圖(2)所示.已知支架底部支架CD平行于水平面,EF⊥OE,GF⊥EF,支架可繞點(diǎn)O旋轉(zhuǎn),OE=20cm,EF=20cm.如圖(3)若將支架上部繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)G落在直線CD上時(shí),測(cè)量得∠EOG=65°.
(1)求FG的長(zhǎng)度(結(jié)果精確到0.1);
(2)將支架由圖(3)轉(zhuǎn)到圖(4)的位置,若此時(shí)F、O兩點(diǎn)所在的直線恰好于CD垂直,點(diǎn)F的運(yùn)動(dòng)路線的長(zhǎng)度稱為點(diǎn)F的路徑長(zhǎng),求點(diǎn)F的路徑長(zhǎng).
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,1.73)
【答案】(1)FG的長(zhǎng)度約為3.8cm;(2)
【解析】
(1)作GM⊥OE可得矩形EFGM,設(shè)FG=xcm,可知EF=GM=20cm,OM=(20﹣x)cm,根據(jù)tan∠EOG=列方程可求得x的值;
(2)RT△EFO中求出OF的長(zhǎng)及∠EOF的度數(shù),由∠EOG度數(shù)可得旋轉(zhuǎn)角∠FOF′度數(shù),根據(jù)弧長(zhǎng)公式計(jì)算可得.
解:(1)如圖,作GM⊥OE于點(diǎn)M,
∵FE⊥OE,GF⊥EF,
∴四邊形EFGM為矩形,
設(shè)FG=xcm,
∴EF=GM=20cm,FG=EM=xcm,
∵OE=20cm,
∴OM=(20﹣x)cm,
在RT△OGM中,
∵∠EOG=65°,
∴tan∠EOG=,即=tan65°,
解得:x≈3.8cm;
故FG的長(zhǎng)度約為3.8cm.
(2)連接OF,
在Rt△EFO中,∵EF=20,EO=20,
∴FO==40,tan∠EOF=,
∴∠EOF=60°,
∴∠FOG=∠EOG﹣∠EOF=5°,
又∵∠GOF′=90°,
∴∠FOF′=85°,
∴點(diǎn)F在旋轉(zhuǎn)過(guò)程中所形成的弧的長(zhǎng)度為:cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚島自古以來(lái)就是中國(guó)的神圣領(lǐng)土,為宣誓主權(quán),我海監(jiān)船編隊(duì)奉命在釣魚島附近海域進(jìn)行維權(quán)活動(dòng),如圖,一艘海監(jiān)船以30海里/小時(shí)的速度向正北方向航行,海監(jiān)船在A處時(shí),測(cè)得釣魚島C在該船的北偏東30°方向上,航行半小時(shí)后,該船到達(dá)點(diǎn)B處,發(fā)現(xiàn)此時(shí)釣魚島C與該船距離最短.
(1)請(qǐng)?jiān)趫D中作出該船在點(diǎn)B處的位置;
(2)求釣魚島C到B處距離(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(1,5),直線l1:y=x,直線l2過(guò)原點(diǎn)且與x軸正半軸成60°夾角,在l1上有一動(dòng)點(diǎn)M,在l2上有一動(dòng)點(diǎn)N,連接AM、MN,則AM+MN的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物定點(diǎn)A的仰角為60°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為45°.已知BC=60m,山坡的坡比為1:2.
(1)求該建筑物的高度(即AB的長(zhǎng),結(jié)果保留根號(hào));
(2)求此人所在位置點(diǎn)P的鉛直高度(即PD的長(zhǎng),結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【操作發(fā)現(xiàn)】
如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)按要求畫圖:將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B= .
【問(wèn)題解決】
如圖②,在等邊三角形ABC中,AC=7,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問(wèn)題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.
…
請(qǐng)參考小明同學(xué)的想法,完成該問(wèn)題的解答過(guò)程.(一種方法即可)
【靈活運(yùn)用】
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(zhǎng)(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是矩形ABCD的對(duì)角線,⊙O是△ABC的內(nèi)切圓,點(diǎn)E是邊AD上一點(diǎn),連結(jié)CE,將△CDE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD落到對(duì)角線AC上時(shí),點(diǎn)E恰與圓心O重合,已知AE=6,則下列結(jié)論不正確的是( 。
A. BC+DE=ACB. ⊙O 的半徑是2
C. ∠ACB=2∠DCED. AE=CE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017四川省內(nèi)江市)如圖,已知直線l1∥l2,l1、l2之間的距離為8,點(diǎn)P到直線l1的距離為6,點(diǎn)Q到直線l2的距離為4,PQ=,在直線l1上有一動(dòng)點(diǎn)A,直線l2上有一動(dòng)點(diǎn)B,滿足AB⊥l2,且PA+AB+BQ最小,此時(shí)PA+BQ=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為___________.
(2)將圖①中的菱形ADEF繞點(diǎn)A在平面內(nèi)逆時(shí)針旋轉(zhuǎn)α(0°<α<180°).
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫出CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線軸,且直線l與拋物線和y軸分別交于點(diǎn)A,B,C,點(diǎn)D為拋物線的頂點(diǎn).若點(diǎn)E的坐標(biāo)為,點(diǎn)A的橫坐標(biāo)為1.
(1)線段AB的長(zhǎng)度等于________;
(2)點(diǎn)P為線段AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作AB的垂線交AB于點(diǎn)H,點(diǎn)F為y軸上一點(diǎn),當(dāng)的面積最大時(shí),求的最小值;
(3)在(2)的條件下,刪除拋物線在直線PH左側(cè)部分圖象并將右側(cè)部分圖象沿直線PH翻折,與拋物線在直線PH右側(cè)部分圖象組成新的函數(shù)M的圖象.現(xiàn)有平行于FH的直線,若直線與函數(shù)M的圖象有且只有2個(gè)交點(diǎn),求t的取值范圍(請(qǐng)直接寫出t的取值范圍,無(wú)需解答過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com