【題目】如圖,一農(nóng)戶要建一個(gè)矩形鴨舍,鴨舍的一邊利用長為13m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門所圍矩形鴨舍的長、寬分別為多少時(shí),鴨舍面積為?
【答案】長為12m,寬為8m.
【解析】
設(shè)鴨舍垂直于住房墻的一邊長為xm,則鴨舍的另一邊長為,根據(jù)“一農(nóng)戶要建一個(gè)矩形鴨舍,鴨舍的一邊利用長為13m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門所圍矩形鴨舍的長、寬分別為多少時(shí),鴨舍面積為,列出關(guān)于x的一元二次方程,解之即可.
解:設(shè)鴨舍垂直于住房墻的一邊長為xm,則鴨舍的另一邊長為,
依題意,得,
化簡,得,
解這個(gè)方程,得,,
當(dāng)時(shí),舍去,
當(dāng)時(shí),,
答:所建矩形鴨舍的長為12m,寬為8m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOBC的頂點(diǎn)O在原點(diǎn),邊AO,BO分別在x軸和y軸上,點(diǎn)C坐標(biāo)為(4,4),點(diǎn)D是BO的中點(diǎn),點(diǎn)P是邊OA上的一個(gè)動(dòng)點(diǎn),連接PD,以P為圓心,PD為半徑作圓,設(shè)點(diǎn)P橫坐標(biāo)為t,當(dāng)⊙P與正方形AOBC的邊相切時(shí),t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點(diǎn)C射進(jìn)房間的地板F處,中午太陽光恰好能從窗戶的最低點(diǎn)D射進(jìn)房間的地板E處,小明測得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并測得OE=0.8 m,OF=3 m,求圍墻AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被平均分成4個(gè)扇形,分別標(biāo)有1、2、3、4四個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤為一次游戲.當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:
售價(jià)x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價(jià)定為多少元?
(3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤w(元)最大?此時(shí)的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=120°,點(diǎn)A,B分別在OM,ON上,且OA=OB=a,將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(0°<α<120°,且α≠60°),作點(diǎn)A關(guān)于直線OM′的對稱點(diǎn)C,畫直線BC交OM′于點(diǎn)D,連接AC,AD.
(1)求證:AD=CD;
(2)如圖1,當(dāng)0°<α<60°時(shí),試證明∠ACD的大小是一個(gè)定值;
(3)當(dāng)60°<α<120°時(shí),(2)中的結(jié)論還成立嗎?請補(bǔ)全圖形并說明理由;
(4)△ACD面積的最大值為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在利用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c(a=0)的圖象時(shí),先取自變量x的一些值,計(jì)算出相應(yīng)的函數(shù)值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | ﹣3 | … |
接著,他在描點(diǎn)時(shí)發(fā)現(xiàn),表格中有一組數(shù)據(jù)計(jì)算錯(cuò)誤,他計(jì)算錯(cuò)誤的一組數(shù)據(jù)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com