【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個動點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PAB的面積有最大值?

(3)過點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點(diǎn)P(4,6).

【解析】1)利用待定系數(shù)法進(jìn)行求解即可得;

(2)作PMOB與點(diǎn)M,交AB于點(diǎn)N,作AGPM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由SPAB=SPAN+SPBN=PNAG+PNBM=PNOB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;

(3)由PHOBDHAO,據(jù)此由OA=OB=6得∠BDH=BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6x的值即可得出答案.

(1)∵拋物線過點(diǎn)B(6,0)、C(﹣2,0),

∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),

將點(diǎn)A(0,6)代入,得:﹣12a=6,

解得:a=﹣,

所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;

(2)如圖1,過點(diǎn)PPMOB與點(diǎn)M,交AB于點(diǎn)N,作AGPM于點(diǎn)G,

設(shè)直線AB解析式為y=kx+b,

將點(diǎn)A(0,6)、B(6,0)代入,得:

,

解得:,

則直線AB解析式為y=﹣x+6,

設(shè)P(t,﹣t2+2t+6)其中0<t<6,

N(t,﹣t+6),

PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,

SPAB=SPAN+SPBN

=PNAG+PNBM

=PN(AG+BM)

=PNOB

=×(﹣t2+3t)×6

=﹣t2+9t

=﹣(t﹣3)2+

∴當(dāng)t=3時,△PAB的面積有最大值;

(3)如圖2,

PHOBH,

∴∠DHB=AOB=90°,

DHAO,

OA=OB=6,

∴∠BDH=BAO=45°,

PEx軸、PDx軸,

∴∠DPE=90°,

若△PDE為等腰直角三角形,

則∠EDP=45°,

∴∠EDP與∠BDH互為對頂角,即點(diǎn)E與點(diǎn)A重合,

則當(dāng)y=6時,﹣x2+2x+6=6,

解得:x=0(舍)或x=4,

即點(diǎn)P(4,6).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,過頂點(diǎn)A的直線DEBC,ABC,ACB的平分線分別交DEE,D.若AC=6,AB=8,則DOE=_____,DE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°AC=2,BC=3,點(diǎn)M是直線BC上一動點(diǎn),且∠CAM+CBA=45°,則BM的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東東玩具商店用500元購進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購進(jìn)第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價多了5元.

(1)求第一批悠悠球每套的進(jìn)價是多少元;

(2)如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖△ABC三個頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

①畫出△ABC向上平移6個單位得到的△A1B1C1;
②以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式x﹣ <1的解集為x<1,則關(guān)于x的一元二次方程x2+ax+1=0根的情況是(
A.有兩個相等的實(shí)數(shù)根
B.有兩個不相等的實(shí)數(shù)根
C.無實(shí)數(shù)根
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=4-x與兩坐標(biāo)軸分別相交于A、B點(diǎn),點(diǎn)M是線段AB上任意一點(diǎn)(A、B兩點(diǎn)除外),過M分別作MCOA于點(diǎn)CMDOB于點(diǎn)D。

(1)當(dāng)點(diǎn)MAB上運(yùn)動時,四邊形OCMD的周長為________;

(2)當(dāng)四邊形OCMD為正方形時,將正方形OCMD沿著x軸的正方向移動,設(shè)平移的距離為a (0<a≤4),在平移過程中:

①當(dāng)平移距離a=1時, 正方形OCMDAOB重疊部分的面積為________;

②當(dāng)平移距離a是多少時,正方形OCMD的面積被直線AB分成l:3兩個部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣2x﹣ =0的某個根,也是一元二次方程x2﹣(k+2)x+ =0的根,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)P,根據(jù)下列條件,求∠BPC的度數(shù).

(1)若∠ABC=50°,∠ACB=60°,則∠BPC   ;

(2)若∠ABC+∠ACB=120°,則∠BPC   

(3)若∠A=80°,則∠BPC   

(4)從以上的計算中,你能發(fā)現(xiàn)已知∠A,求∠BPC的公式是:∠BPC   (提示:用∠A表示).

查看答案和解析>>

同步練習(xí)冊答案