【題目】已知二次函數(shù).

1)在給定的直角坐標系中,畫出這個函數(shù)的圖象;

2)根據(jù)圖象,寫出當時,的取值范圍;

3)若將此圖象沿軸向左平移3個單位,向下移動2個單位,請寫出平移后圖象所對應的函數(shù)表達式.

【答案】1)圖像見解析(23

【解析】

(1)首先列表求出圖象上點的坐標,進而描點連線畫出圖象即可;

(2)根據(jù)圖像,可知當時,找到圖像與軸的交點橫坐標,即可得到答案;

(3)根據(jù)二次函數(shù)的平移法(先轉(zhuǎn)換為頂點式,上加下減、左加右減)則即可直接寫出平移后的解析式.

(1)二次函數(shù)

列表得:

x

-1

0

1

2

3

4

5

y

-5

0

3

4

3

0

-5

描點,連線,函數(shù)圖像如下:

(2)根據(jù)圖像,可知當時,的取值范圍;

(3)將變形為,此圖像沿軸向左平移3個單位,向下移動2個單位,則化簡完所對應的函數(shù)表達式.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,上一點,,垂足為點,是弧的中點,與弦交于點.

1)如果是弧的中點,求的值;

2)如果的直徑,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于點,與軸交于點.

1)求拋物線的表達式;

2)點是拋物線上第二象限內(nèi)的點,連接,設(shè)的面積為,當取最大值時,求點的坐標;

3)作射線,將射線點順時針旋轉(zhuǎn)交拋物線于另一點,在射線上是否存在一點,使的周長最小.若存在,求出的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1為放置在水平桌面l上的臺燈,底座的高AB5cm,長度均為20cm的連桿BC、CDAB始終在同一平面上.

1)轉(zhuǎn)動連桿BCCD,使∠BCD成平角,∠ABC150°,如圖2,求連桿端點D離桌面l的高度DE

2)將(1)中的連桿CD再繞點C逆時針旋轉(zhuǎn),經(jīng)試驗后發(fā)現(xiàn),如圖3,當∠BCD150°時臺燈光線最佳.求此時連桿端點D離桌面l的高度比原來降低了多少厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓之間的距離AC=24m,現(xiàn)需了解甲樓對乙樓的采光的影響情況,當太陽光與水平線的夾角為30°時,求甲樓的影子在乙樓上有多高?(精確到0.1m,≈1.41,≈1.73)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,邊的中點,將沿折疊,使點落在點處,的延長線與邊交于點.下列四個結(jié)論:;;;S正方形ABCD,其中正確結(jié)論的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊的邊長為,等邊的邊長為,把放在中,使重合,點邊上,如圖所示,此時點中點,在內(nèi)部將按下列方式旋轉(zhuǎn):繞點順時針旋轉(zhuǎn),使點與點重合,完成第次操作,此時點中點,旋轉(zhuǎn)了__________;再繞點順時針旋轉(zhuǎn),使點與點重合,完成第次操作;……這樣依次繞的某個頂點連續(xù)旋轉(zhuǎn)下去,第次操作完成時,_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知某個二次函數(shù)的圖象經(jīng)過點A1,2),B2,﹣1),C4,﹣1),且該二次函數(shù)的最小值是﹣2

1)請在圖中描出該函數(shù)圖象上另外的兩個點,并畫出圖象;

2)求出該二次函數(shù)的解析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的相似對角線

理解:(1)如圖1,已知RtABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC相似對角線的四邊形(保留畫圖痕跡,找出3個即可);

2)如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對角線BD平分∠ABC.求證:BD是四邊形ABCD相似對角線

查看答案和解析>>

同步練習冊答案