【題目】(1)問題解決:如圖,在四邊形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
①如圖1,若α=90°,根據(jù)教材中一個重要性質(zhì)直接可得AD=CD,這個性質(zhì)是 ;
②在圖2中,求證:AD=CD;
(2)拓展探究:根據(jù)(1)的解題經(jīng)驗,請解決如下問題:如圖3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求證BD+AD=BC.
【答案】(1)①角平分線上的點到角的兩邊距離相等;②見解析;(2)見解析.
【解析】
(1)①根據(jù)角平分線的性質(zhì)定理即可解決問題;
②如圖2中,作DE⊥BA于E,DF⊥BC于F.只要證明△DEA≌△DFC即可解決問題;
(2)如圖3中,在BC時截取BK=BD,BT=BA,連接DK.首先證明DK=CK,再證明△DBA≌△DBT,推出AD=DT,∠A=∠BTD=100°,推出∠DTK=∠DKT=80°,推出DT=DK=CK,由此即可解決問題;
(1)①根據(jù)角平分線的性質(zhì)定理可知AD=CD.
所以這個性質(zhì)是角平分線上的點到角的兩邊距離相等.
故答案為:角平分線上的點到角的兩邊距離相等.
②如圖2中,作DE⊥BA于E,DF⊥BC于F.
∵BD平分∠EBF,DE⊥BE,DF⊥BF,
∴DE=DF,
∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,
∴∠EAD=∠C,
∵∠E=∠DFC=90°,
∴△DEA≌△DFC,
∴DA=DC.
(2)如圖3中,在BC上截取BK=BD,BT=BA,連接DK.
∵AB=AC,∠A=100°,
∴∠ABC=∠C=40°,
∵BD平分∠ABC,
∴∠DBK=∠ABC=20°,
∵BD=BK,
∴∠BKD=∠BDK=80°,
∵∠BKD=∠C+∠KDC,
∴∠KDC=∠C=40°,
∴DK=CK,
∵BD=BD,BA=BT,∠DBA=∠DBT,
∴△DBA≌△DBT,
∴AD=DT,∠A=∠BTD=100°,
∴∠DTK=∠DKT=80°,
∴DT=DK=CK,
∴BD+AD=BK+CK=BC.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以△ABC的邊AB,AC向外作兩個等邊三角形△ABD,△ACE.連接BE、CD交點F,連接AF.
(1)求證:△ACD≌△AEB;
(2)求證:AF+BF+CF=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學習小組在研究函數(shù)y=x3﹣2x的圖象與性質(zhì)時,已列表、描點并畫出了圖象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)請補全函數(shù)圖象;
(2)方程x3﹣2x=﹣2實數(shù)根的個數(shù)為 ;
(3)觀察圖象,寫出該函數(shù)的兩條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是⊙O的切線.
(2)若PB=3,DB=4,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一只不透明的布袋中裝有紅球 3 個、黃球 1 個,這些球除顏色外都相同,均勻搖勻.
(1)從布袋中一次摸出 1 個球,計算“摸出的球恰是黃球”的概率;
(2)從布袋中一次摸出 2 個球,計算“摸出的球恰是一紅一黃”的概率(用“ 畫樹狀圖”或“列表”的方法寫出計算過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足,連接AF并延長交⊙O于點E,連接AD,DE,若CF=2,AF=3.給出下列結(jié)論:①△ADF∽△AED; ②FG=2;③tan∠E=; ④S△DEF=4,其中正確的是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點P落在∠AOB的平分線OC的任意一點上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】趙州橋是我國建筑史上的一大創(chuàng)舉,它距今約1400年,歷經(jīng)無數(shù)次洪水沖擊和8次地震卻安然無恙.如圖,若橋跨度AB約為40米,主拱高CD約10米,
(1)如圖1,尺規(guī)作圖,找到橋弧所在圓的圓心O(保留作圖痕跡);
(2)如圖2,求橋弧AB所在圓的半徑R.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com