【題目】某學習小組在研究函數(shù)y=x3﹣2x的圖象與性質時,已列表、描點并畫出了圖象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)請補全函數(shù)圖象;
(2)方程x3﹣2x=﹣2實數(shù)根的個數(shù)為 ;
(3)觀察圖象,寫出該函數(shù)的兩條性質.
【答案】(1)作圖見解析;(2)3;(3)性質見解析.
【解析】試題分析:(1)用光滑的曲線連接即可得出結論;
(2)根據(jù)函數(shù)y=x3-2x和直線y=-2的交點的個數(shù)即可得出結論;
(3)根據(jù)函數(shù)圖象即可得出結論.
試題解析:(1)補全函數(shù)圖象如圖所示,
(2)如圖1,
作出直線y=-2的圖象,
由圖象知,函數(shù)y=x3-2x的圖象和直線y=-2有三個交點,
∴方程x3-2x=-2實數(shù)根的個數(shù)為3,
(3)由圖象知,
1、此函數(shù)在實數(shù)范圍內既沒有最大值,也沒有最小值,
2、此函數(shù)在x<-2和x>2,y隨x的增大而增大,
3、此函數(shù)圖象過原點,
4、此函數(shù)圖象關于原點對稱.
科目:初中數(shù)學 來源: 題型:
【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調查,調查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.
對霧霾了解程度的統(tǒng)計表:
對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請結合統(tǒng)計圖表,回答下列問題.
(1)本次參與調查的學生共有 人,m= ,n= ;
(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是 度;
(3)請補全條形統(tǒng)計圖;
(4)根據(jù)調查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規(guī)則是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,與均為等腰直角三角形,
(1)如圖1,點在上,點與重合,為線段的中點,則線段與的數(shù)量關系是 ,與的位置是 .
(2)如圖2,在圖1的基礎上,將繞點順時針旋轉到如圖2的位置,其中在一條直線上,為線段的中點,則線段與是否存在某種確定的數(shù)量關系和位置關系?證明你的結論.
(3)若繞點旋轉任意一個角度到如圖3的位置,為線段的中點,連接、,請你完成圖3,猜想線段與的關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,AB=AC=10,線段BC在軸上,BC=12,點B的坐標為(﹣3,0),線段AB交y軸于點E,過A作AD⊥BC于D,動點P從原點出發(fā),以每秒3個單位的速度沿x軸向右運動,設運動的時間為t秒.
(1)點E的坐標為( , );
(2)當△BPE是等腰三角形時,求t的值;
(3)若點P運動的同時,△ABC以B為位似中心向右放大,且點C向右運動的速度為每秒2個單位,△ABC放大的同時高AD也隨之放大,當以EP為直徑的圓與動線段AD所在直線相切,求t的值和此時C點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,E為AB邊上一點,過E作EG⊥BC于點G,交對角線BD于點F.
(1)如圖(1),若∠ACE=15°,BC=6,求EF的長;
(2)如圖(2),H為CE的中點,連接AF,FH,求證:AF=2FH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,若∠DAB的平分線AE交CD于E,連結BE,且BE也平分∠ABC,則以下的命題中正確的個數(shù)是( )
①BC+AD=AB ; ②E為CD中點
③∠AEB=90°; ④S△ABE=S四邊形ABCD
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題解決:如圖,在四邊形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
①如圖1,若α=90°,根據(jù)教材中一個重要性質直接可得AD=CD,這個性質是 ;
②在圖2中,求證:AD=CD;
(2)拓展探究:根據(jù)(1)的解題經(jīng)驗,請解決如下問題:如圖3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求證BD+AD=BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉90°至△DBE后,再把△ABC沿射線平移至△FEG,DF、FG相交于點H.
(1)判斷線段DE、FG的位置關系,并說明理由;
(2)連結CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,C、D是圓O上的點,且OC∥BD,AD分別與BC、OC相交于點E、F.則下列結論:
①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.
其中一定成立的是( )
A.①③⑤ B.②③④ C.②④⑤ D.①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com