【題目】如圖,某商場設立了一個可以自由轉動的轉盤,并規(guī)定:顧客購物元以上就能獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一區(qū)域就可以獲得相應的獎品.表是活動進行中的一組統(tǒng)計數(shù)據:
計算并完成表格:
轉動轉盤的次數(shù) | ||||||
落在“鉛筆”的次數(shù) | ||||||
落在“鉛筆”的頻率 | ________ | ________ | ________ | ________ | ________ | ________ |
請估計,當很大時,頻率將會接近多少?
假如你去轉動轉盤一次,你獲得可樂的概率是多少?
【答案】(1) 0.68 ,0.74,0.68,0.69,0.71,0.70 ; (2)0.7;(3)0.30.
【解析】
(1)分別利用表格中數(shù)據結合頻率公式求出即可;
(2)利用(1)中所求頻率即可估計出當n很大時,頻率將會接近的值;
(3)利用(2)中所求可得出落在“鉛筆”的概率,進而得出落在“可樂”的概率.
(1)填表如下:
轉動轉盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 | ||
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 | ||
落在“鉛筆”的頻率
| 0.68 | 0.74 | 0.68 | 0.69 | 0.71 | 0.70 |
(2)由表格中數(shù)據可得:當n很大時,頻率將會接近0.70;
(3)由(2)得:當n很大時,頻率將會接近0.70,即落在“鉛筆”的概率為:0.7,
則轉動轉盤一次,獲得可樂的概率是:0.30.
科目:初中數(shù)學 來源: 題型:
【題目】水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據試驗數(shù)據繪制出圖②所示的容器內盛水量W(L)與滴水時間t(h)的函數(shù)關系圖象,請結合圖象解答下列問題:
(1)容器內原有水多少?
(2)求W與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?
圖 ① 圖②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=40°,P為∠MON內一定點,OM上有一點A,ON上有一點B,當△PAB的周長取最小值時,∠APB的度數(shù)是_____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知是邊長為的等邊三角形,動點、同時從、兩點出發(fā),分別沿、勻速運動,其中點運動的速度是,點運動的速度是,當點到達點時,、兩點都停止運動,設運動時間為,解答下
列問題:
當時,判斷的形狀,并說明理由;
設的面積為,求與的函數(shù)關系式;
作交于點,連接,當為何值時,.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從,,,四個數(shù)中任取兩個數(shù)作為,分別代入一元二次方程中,那么所有的一元二次方程中有實數(shù)解的一元二次方程的概率為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C、D不重合).
(1)如圖①,當α=90°時,求證:DE+DF=AD.
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當α=60°時,(1)中的結論變?yōu)?/span> ,請給出證明.
(3)在(2)的條件下,將∠QPN繞點P旋轉,若旋轉過程中∠QPN的邊PQ與邊AD的延長線交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關系,直接寫出結論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,“春節(jié)期間”,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為y甲(元),在乙園所需總費用為y乙(元),y甲、y乙與之間的函數(shù)關系如圖所示,折線OAB表示y乙與之間的函數(shù)關系.
(1)甲采摘園的門票是 元,在乙園采摘草莓超過______后超過部分有打折優(yōu)惠;
(2)當采摘量時,采摘多少千克草莓,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABP與是兩個全等的等邊三角形,且,有下列四個結論:①,②,③,④四邊形ABCD是軸對稱圖形,其中正確的有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com