【題目】在一組數(shù)據(jù)x1,x2,,xn,各數(shù)據(jù)與它們的平均數(shù)的差的絕對(duì)值的平均數(shù),T=(|x1-|+|x2-|++|xn-|)叫做這組數(shù)據(jù)的“平均差”.“平均差”也能描述一組數(shù)據(jù)的離散程度.“平均差”越大說明數(shù)據(jù)的離散程度越大.因?yàn)椤捌骄睢钡挠?jì)算比方差的計(jì)算要容易一點(diǎn),所以有時(shí)人們也用它代替方差來(lái)比較數(shù)據(jù)的離散程度.最大值與最小值的差、方差(標(biāo)準(zhǔn)差)、平均差都是反映數(shù)據(jù)離散程度的量.

一水產(chǎn)養(yǎng)殖戶李大爺要了解魚塘中魚的質(zhì)量的離散程度,因?yàn)閭(gè)頭大小差異太大會(huì)出現(xiàn)“大魚吃小魚”的情況.為防止出現(xiàn)“大魚吃小魚”的情況,在能反映數(shù)據(jù)離散程度的幾個(gè)量中某些值超標(biāo)時(shí)就要捕撈,分開養(yǎng)殖或出售.他從甲、乙兩個(gè)魚塘各隨機(jī)捕撈10條魚稱得質(zhì)量(單位:千克)如下:

甲魚塘:35、557、7、5、5、5、3

乙魚塘:44、56、65、66、44

(1)分別計(jì)算從甲、乙兩個(gè)魚塘中抽取的10條魚的質(zhì)量的極差(極差:最大值與最小值的差)、方差、平均差.完成下面的表格:

極差(千克)

方差

平均差(千克)

甲魚塘

乙魚塘

(2)如果你是技術(shù)人員,你會(huì)告訴李大爺哪個(gè)魚塘的風(fēng)險(xiǎn)更大些?哪些量更能說明魚質(zhì)量的離散程度?

【答案】1)(6分)


極差

方差

平均差

A

4

1.6

0.8

B

2

0.8

0.8

2)極差與方差 (4分)

【解析】

試題(1)根據(jù)極差、方差、平均差的定義分別計(jì)算即可;(2)因?yàn)橐乐钩霈F(xiàn)大魚吃小魚的情況,所以注意了解魚塘中魚的重量的離散程度,即波動(dòng)大小,波動(dòng)大的風(fēng)險(xiǎn)更大,根據(jù)(1)中的數(shù)據(jù)可得極差與方差更能說明魚重量的離散程度.

試題解析:(1)甲組數(shù)據(jù)中最大的值7,最小值3,故極差=7-3=4,

=3×2+6×5+2×7÷10=5,S2==1.6

=|3-5|+|5-5|+…+|3-5|=0.8;

乙組數(shù)據(jù)中最大的值6,最小值4,故極差=6-4=2=4×4+6×4+5×2÷10=5,

=|4-5|+|4-5|+…+|4-5|=0.8

S2=[4-52+4-52+5-52+6-52+6-52+5-52+6-52+6-52+4-52+4-52]÷10=0.8,


極差

方差

平均差

A

4

1.6

0.8

B

2

0.8

0.8

2∵S2S2;所以根據(jù)A,B的極差與方差可以得出A魚塘風(fēng)險(xiǎn)更大.極差與方差更能說明魚重量的離散程度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)里:

1,﹣,8.9,﹣7, ,﹣3.2,+1 008,﹣0.06,28,﹣9.

正整數(shù)集合:{______…};

負(fù)整數(shù)集合:{______…};

正分?jǐn)?shù)集合:{______…};

負(fù)分?jǐn)?shù)集合:{______…}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013420日,四川省雅安市蘆山縣發(fā)生了7.0級(jí)地震,某校開展了雅安,我們?cè)谝黄?/span>的賑災(zāi)捐款活動(dòng),其中九年級(jí)二班50名學(xué)生的捐款情況如下表所示:

捐款金額(元)

5

10

15

20

50

捐款人數(shù)(人)

7

18

10

12

3

1)求這50個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

2)根據(jù)樣本數(shù)據(jù),估計(jì)該校九年級(jí)300名學(xué)生在本次活動(dòng)中捐款多于15元的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)如圖,坐標(biāo)原點(diǎn)O為矩形ABCD的對(duì)稱中心,頂點(diǎn)A的坐標(biāo)為(1,t),ABx軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點(diǎn)O為位似中心,點(diǎn)A′,B′分別是點(diǎn)A,B的對(duì)應(yīng)點(diǎn),.已知關(guān)于x,y的二元一次方程(m,n是實(shí)數(shù))無(wú)解,在以m,n為坐標(biāo)(記為(m,n)的所有的點(diǎn)中,若有且只有一個(gè)點(diǎn)落在矩形A′B′C′D′的邊上,則kt的值等于(

A. B.1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小丁設(shè)計(jì)的利用直角三角形和它的斜邊中點(diǎn)作矩形的尺規(guī)作圖過程.

已知:如圖,在RtΔABC中,∠ABC=90°0AC的中點(diǎn).

求作:四邊形ABCD,使得四邊形ABCD為矩形.

作法:①作射線BO,在線段BO的延長(zhǎng)線上取點(diǎn)D,使得DO=BO;

②連接AD,CD,則四邊形ABCD為矩形.

根據(jù)小丁設(shè)計(jì)的尺規(guī)作圖過程.

(1)使用直尺和圓規(guī),在圖中補(bǔ)全圖形(保留作圖痕跡)

(2)完成下面的證明.

證明:∴點(diǎn)OAC的中點(diǎn),

AO=CO.

又∵DO=BO

∵四邊形ABCD為平行四邊形(__________)(填推理的依據(jù)).

∵∠ABC=90°,

ABCD為矩形(_________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.

(1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;

(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果等腰三角形一腰上的高與另一腰的夾角45°,那么這個(gè)等腰三角形的底角為(

A. 67°50B. 22°C. 67.5°D. 22.5°或67.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點(diǎn).

(1)求證:BC=DE;

(2)連接AD、BE,若∠BAC=C,求證:四邊形DBEA是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如2335337911,4313151719,…,分裂后第一個(gè)數(shù)是____________(用含m的代數(shù)式表示);若分裂后,其中有一個(gè)奇數(shù)是2019,則m的值是_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案