【題目】如圖,在△ABC中,∠C=90°,AC+BC=8,點O是斜邊AB上一點,以O為圓心的⊙O分別與AC,BC相切于點D,E.
(1)當(dāng)AC=2時,求⊙O的半徑;
(2)設(shè)AC=x,⊙O的半徑為y,求y與x的函數(shù)關(guān)系式.
【答案】(1);(2).
【解析】
試題(1)連接OD,OE,先證四邊形OECD是正方形,在△ADO中,解直角三角形即可得到半徑.
(2)由題意可知,OD∥BC,∠AOD=∠B,則兩角正切值相等,進(jìn)而列出關(guān)系式.
試題解析:(1)連接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6,∵以O為圓心的⊙O分別與AC,BC相切于點D,E,∴四邊形OECD是正方形,tan∠B=tan∠AOD==,解得OD=,∴圓的半徑為;
(2)∵AC=x,BC=8﹣x,在直角三角形ABC中,tanB=,∵以O為圓心的⊙O分別與AC,BC相切于點D,E,∴四邊形OECD是正方形,tan∠AOD=tanB==,解得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點,點A(3,0),B(0.4),以點A為旋轉(zhuǎn)中心,把△ABO順時針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)角為α.∠ABO為β.
(I )如圖①,當(dāng)旋轉(zhuǎn)后點D恰好落在AB邊上時,求點D的坐標(biāo);
(II)如圖②,當(dāng)旋轉(zhuǎn)后滿足BC∥x軸時,求α與β之間的數(shù)量關(guān)系:
(III)當(dāng)旋轉(zhuǎn)后滿足∠AOD=β時,求直線CD的解析式(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩條公路OM,ON相交成30°,沿公路OM方向離兩條公路的交叉處O點80米的A處有一所希望小學(xué),當(dāng)拖拉機沿ON方向行駛時,路兩旁50米內(nèi)會受到噪音影響,已知有兩臺相距30米的拖拉機正沿ON方向行駛,它們的速度均為5米/秒,問這兩臺拖拉機沿ON方向行駛時給小學(xué)帶來噪音影響的時間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,正方形ABCD中,AD=4,點E在CD上,DE=3CE,F(xiàn)是AD上異于D的點,且∠EFB=∠FBC,則tan∠DFE=( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點P,根據(jù)下列條件,求∠BPC的度數(shù).
(1)若∠ABC=50°,∠ACB=60°,則∠BPC= ;
(2)若∠ABC+∠ACB=120°,則∠BPC= ;
(3)若∠A=80°,則∠BPC= ;
(4)從以上的計算中,你能發(fā)現(xiàn)已知∠A,求∠BPC的公式是:∠BPC= (提示:用∠A表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在線段AB上有一點C(點C不與A、B重合且AC>BC),分別以AC、BC為邊作正方形ACED和正方形BCFG,其中點F在邊CE上,連接AG.
(1)如圖1,若AC=7,BC=5,則AG=______;
(2)如圖2,若點C是線段AB的三等分點,連接AE、EG,求證:△AEG是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A(0,3),點D為x軸上一動點,以AD為邊在AD的右側(cè)作等腰Rt△ADE,∠ADE=90°,連接OE,則OE的最小值為( )
A. B. C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中有格點△ABC.
(注:頂點在網(wǎng)格線交點處的三角形叫做格點三角形)
(1)圖中AB的長為_________個單位長度;
(2)只用沒有刻度的直尺,按如下要求畫圖:
① 以點C為位似中心,作△DEC∽△ABC,且相似比為1∶2;
②若點B為原點,點A(1,3),請在圖2中畫出平面直角坐標(biāo)系,直接出△ABC的外心的坐標(biāo)______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù)y=ax2﹣5x+c的圖象如圖.
(1)求這個二次函數(shù)的解析式和它的圖象的頂點坐標(biāo);
(2)觀察圖象,回答:何時y隨x的增大而增大;何時y隨x的增大而減小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com