拋物線y=2-5與y軸的交點(diǎn)坐標(biāo)是

[  ]

A.(0,-5)
B.(0,13)
C.(0,4)
D.(3,-5)
答案:B
解析:

把拋物線化成一般式:

=2x2-12x+18-5

=2x2-12x+13.

所以當(dāng)x-0時(shí),y=13即與y軸的交點(diǎn)的坐標(biāo)是(0,13)。

選B。

說(shuō)明:拋物線y=ax2+bx+c(a≠0)

與Y軸的交點(diǎn)坐標(biāo)是(0,c).

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、拋物線y=9x2-px+4與x軸只有一個(gè)公共點(diǎn),則p的值是
±12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)一模)如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式及頂點(diǎn)M坐標(biāo);
(2)在拋物線的對(duì)稱軸上找到點(diǎn)P,使得△PAC的周長(zhǎng)最小,并求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、C重合).過(guò)點(diǎn)D作DE∥PC交x軸于點(diǎn)E.設(shè)CD的長(zhǎng)為m,問(wèn)當(dāng)m取何值時(shí),S△PDE=
19
S四邊形ABMC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C(0,-3),且拋物線的對(duì)稱軸是直線x=1.
(1)求b的值;
(2)點(diǎn)E是y軸上一動(dòng)點(diǎn),CE的垂直平分線交y軸于點(diǎn)F,交拋物線于P、Q兩點(diǎn),且點(diǎn)P在第三象限.當(dāng)線段PQ=
34
AB時(shí),求點(diǎn)E的坐標(biāo);
(3)若點(diǎn)M在射線CA上運(yùn)動(dòng),過(guò)點(diǎn)M作MN⊥y軸,垂足為N,以M為圓心,MN為半徑作⊙M,當(dāng)⊙M與x軸相切時(shí),求⊙M的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=
12
x2+bx+c與y軸交于點(diǎn)C,與x軸相交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)Q是線段OB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥BC,交AC于點(diǎn)E,連接CQ,設(shè)OQ=m,當(dāng)△CQE的面積最大時(shí),求m的值,并寫(xiě)出點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線,與該拋物線交于點(diǎn)P,與直線BC交于點(diǎn)F,D的坐標(biāo)為(-2,0),則是否存在這樣的直線l,使OD=DF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=-
1
2
x2+mx+n
與x軸交于不同的兩點(diǎn)A(x1,0),B(x2,0),點(diǎn)A在點(diǎn)B的左邊,拋物線與y軸交于點(diǎn)C,若A,B兩點(diǎn)位于y軸異側(cè),且tan∠CAO=tan∠BCO=
1
3
,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案