【題目】如圖所示,在四邊形ABCD中,∠BAD90°,AD3cm,AB=4 cm,BC=5 cm CD=6 cm

(1)連結(jié)BD,判斷△CBD的形狀;

(2)求四邊形ABCD的面積S

【答案】(1) CBD是等腰三角形;(2) 18cm2.

【解析】

1)求出BD的長,根據(jù)三邊長判斷三角形的形狀;

2)作BECDE,求出BE的長,從而求得△BCD的面積,△ABD的面積很容易求出,進(jìn)而可求得四邊形ABCD的面積.

1)∵∠BAD=90°,AD=3cm,AB=4cm,
BD==5cm
BC=5cm,

BC=BD,
∴△CBD是等腰三角形.
2)作BECDE,

BC=BD,CD=6cm,

DE=3cm,

BD=5cm
BE==4cm,
SCBD=12cm2
SABD=6cm2
故四邊形ABCD的面積為12+6=18cm2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)軸上分別表示.

1)對(duì)照數(shù)軸填寫下表:

5

3

2

0

2

兩點(diǎn)的距離

3

7

________

4

________

0

2)若兩點(diǎn)間的距離記為,試問有何數(shù)量關(guān)系?

3)數(shù)軸上的整數(shù)點(diǎn)為,它到3的距離之和為7,寫出這些整數(shù).

4)若點(diǎn)表示的數(shù)為,當(dāng)點(diǎn)在什么位置時(shí),取得的值最?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,1+2=180°,∠3=B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.

C與∠AED相等,理由如下:

∵∠1+2=180°(已知),1+DFE=180°(鄰補(bǔ)角定義)

∴∠2=___(___),

ABEF(___)

∵∠3=___(___)

又∠B=3(已知)

∴∠B=___(等量代換)

DEBC(___)

∴∠C=AED(___).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF

2)填空:

當(dāng) s時(shí),四邊形ACFE是菱形;

當(dāng) s時(shí),以A,F,CE為頂點(diǎn)的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.

(1)求證方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)當(dāng)m為何值時(shí),方程的兩根互為相反數(shù)?并求出此時(shí)方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,若,則還需添加的一個(gè)條件有( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推動(dòng)陽光體育活動(dòng)的廣泛開展,引導(dǎo)學(xué)生積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運(yùn)動(dòng)鞋供學(xué)生借用.現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了如下的統(tǒng)計(jì)圖和圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 人,圖中的m的值為 ,圖“38號(hào)所在的扇形的圓心角度數(shù)為 ;

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購買200雙運(yùn)動(dòng)鞋,建議購買36號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)OCAB的平分線分別交BD、BCE、F,作BHAF于點(diǎn)H,分別交ACCD于點(diǎn)G、P,連結(jié)GE、GF

1)求證:OAE≌△OBG

2)試問:四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案