【題目】如圖,DB=DC,BAC=BDC=120°DMAC,EBA延長(zhǎng)線上的點(diǎn),∠BAC的角平分線交BCN,∠ABC的外角平分線交CA的延長(zhǎng)線于點(diǎn)P,連接PNABK,連接CK,則下列結(jié)論正確的是:①∠ABD=ACD;②DA平分∠EAC;③當(dāng)點(diǎn)ADB左側(cè)運(yùn)動(dòng)時(shí),為定值;④∠CKN=30° ( )

A.①③④B.②③④C.①②④D.①②③

【答案】C

【解析】

∠BAC=∠BDC=120°可知ABCD四點(diǎn)共圓,由圓周角定理可得∠ABD=ACD,∠DAC=DBC=30°,即可得到∠DAC=EAD=30°,所以①②正確;無法得出的結(jié)論,故錯(cuò)誤;PKN截△ABC,根據(jù)梅涅勞斯定理可得,再根據(jù)角平分線定理可推出,,從而得出,可知CK為∠ACB的角平分線,兩條角平分線交點(diǎn)為△ABC的內(nèi)心G,設(shè)△ANC的內(nèi)心為H,易知HCG上,連接AH,NH,可得角平分線,最后推出AKNH四點(diǎn)共圓,即可得∠CKN=NAH=30°,故正確.

解:∵∠BAC=∠BDC=120°

ABCD四點(diǎn)共圓,∠DBC=DCB=30°,如圖所示,

∴∠ABD=ACD,∠DAC=DBC=30°,

正確;

又∵∠EAC=180°-BAC=60°,

∴∠EAD=EAC-DAC=30°=AEC

AD平分∠EAC,故正確;

無法得出的結(jié)論,故錯(cuò)誤;

④PKN截△ABC,根據(jù)梅涅勞斯定理可得,

AN平分∠BAC,PB平分△ABC的外角,

,整理得

CK平分∠ACB

ANCK交于點(diǎn)G,則G為△ABC的內(nèi)心,

設(shè)△ANC的內(nèi)心為H,易知HCG上,

連接AHNH,則AH平分∠NAC,NH平分∠ANC

設(shè)∠ACB=,則∠ABC=,

∴∠ANC=ABC+BAN=

∴∠ANH=ANC=

又∵∠AKG=ABC+KCB=

∴∠ANH=AKG

AKNH四點(diǎn)共圓,

∴∠CKN=NAH=30°,故正確.

①②④正確,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲隊(duì)成績(jī)的中位數(shù)是   分,乙隊(duì)成績(jī)的眾數(shù)是   分;

2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是   隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx+1與拋物線y=x2-4x

(1)求證:直線l與該拋物線總有兩個(gè)交點(diǎn);

(2)設(shè)直線l與該拋物線兩交點(diǎn)為A,B,O為原點(diǎn),當(dāng)k=-2時(shí),求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程的兩個(gè)實(shí)數(shù)根的平方和是,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCADE中,∠BAC=∠DAE90°,ADAEABAC,且BD、E三點(diǎn)在一條直線上.

1)求證:BDCE

2)求∠BEC的度數(shù).

3)寫出BEAE、CE的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地發(fā)生8.1級(jí)強(qiáng)烈地震,我國(guó)積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作.如圖,某探測(cè)隊(duì)在地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9tan25°≈0.5,1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A1,1),B (42)C(3,4)

1)請(qǐng)畫出ABC關(guān)于y軸對(duì)稱的;

2的面積為 ;

3)在軸上求作一點(diǎn)P,使PAB周長(zhǎng)最小,請(qǐng)畫出PAB,并直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的父親在相距米的兩棵樹間拴了一根繩子,給他做了一個(gè)簡(jiǎn)易的秋千,拴繩子的地方距地面高都是米,繩子自然下垂呈拋物線狀,身高米的小明距較近的那棵樹米時(shí),頭部剛好接觸到繩子,則繩子的最低點(diǎn)距地面的距離為( )米.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC5,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE.延長(zhǎng)AF交邊BC于點(diǎn)G,則CG_____

查看答案和解析>>

同步練習(xí)冊(cè)答案