【題目】如圖, RtABC 中,BAC 90° , AB AC ,分別過點 B、C 作過點 A 的直線的垂線BD、CE ,垂足分別為 D、E ,若 BD 4, CE2,則 DE= _________

【答案】6

【解析】

首先證明∠DBA=CAE,然后再根據(jù)AAS定理證明△BDA≌△AEC,根據(jù)全等三角形的性質可得DA=CEAE=DB,進而得到答案.

解:∵∠BAC=90°,

∴∠BAD+CAE=90°,

BDDE,

∴∠BDA=90°,

∴∠BAD+DBA=90°,

∴∠DBA=CAE

CEDE,

∴∠E=90°,

在△BDA和△AEC中,

,

∴△BDA≌△AECAAS),

DA=CE=2,AE=DB=4

ED=6

故答案為:6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】矩形(非正方形)四個內角的平分線圍成的四邊形是__________.(埴特殊四邊形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市電話撥號上網(wǎng)有兩種收費方式,用戶可以任選其一:A、計時制:005元/分鐘;B、月租制:50元/月(限一部個人住宅電話上網(wǎng))此外,每種上網(wǎng)方式都得加收通信費002元/分鐘

(1)小玲說:兩種計費方式的收費對她來說是一樣的小玲每月上網(wǎng)多少小時?

(2)某用戶估計一個月內上網(wǎng)的時間為65小時,你認為采用哪種方式較為合算?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;

(2)當P位于y軸右邊的拋物線上運動時,過點C作CF直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與OBC相似?并求出此時點P的坐標;

(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問PBC的面積S能否取得最大值?若能,請出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC,∠BAC120°,以CA為邊在∠ACB的另一側作∠ACM=∠ACB,點D為射線CM上任意一點,在射線CM上載取CEBD,連接AD、AE.

(1)如圖1,當點D落在線段BC的延長線上時,求證:△ABD≌△ACE;

(2)(1)的條件下,求出∠ADE的度數(shù);

(3)如圖2,當點D落在線段BC(不含端點)上時,作AHBC,垂足為H,作AGEC,垂足為G,連接HG,判斷△GHC的形狀,并說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調查的學生共有   人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為   度;

(2)請補全條形統(tǒng)計;

(3)若該中學共有學生1200人,估計該中學學生對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市中小學標準化建設工程中,某學校計劃購進一批電腦和一體機,經(jīng)過市場考察得知,購進 1 臺筆記本電腦和 2 臺一體機需要 1.45 萬元,購進 2 臺筆記本電腦和 1 臺一體機需要 1.55 萬元.

1)求每臺筆記本電腦、一體機各多少萬元?

2)根據(jù)學校實際,需購進筆記本電腦和一體機共35臺,總費用不超過17.5萬元,但不低于 17.2萬元,請你通過計算求出共幾種購買方案,并寫出費用最低具體方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)(a是常數(shù),a0),下列結論正確的是(

A.當a=1時,函數(shù)圖象經(jīng)過點(﹣1,1)

B.當a=﹣2時,函數(shù)圖象與x軸沒有交點

C.若a0,函數(shù)圖象的頂點始終在x軸的下方

D.若a0,則當x1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已經(jīng)成為更多人的自主學習選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調查,并根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

1)求本次調查的學生總人數(shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應的扇形圓心角的度數(shù);

3)該校共有學生3000人,請你估計該校對在線閱讀最感興趣的學生人數(shù).

查看答案和解析>>

同步練習冊答案