【題目】如圖,在矩形A′B′CD中,A′B′=10, B′C=8,以CD為直徑作⊙O.將矩形A′B′CD繞點(diǎn)C旋轉(zhuǎn),使所得矩形ABCD′的邊AB與⊙O相切,切點(diǎn)為E.
(1)證明:CE平分∠BCD;
(2)求線(xiàn)段AE的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)6
【解析】
(1)連接OE,利用切線(xiàn)的性質(zhì)證得OE⊥AB,根據(jù)矩形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)得到∠B=90°,即可證得OE∥BC,利用平行線(xiàn)的性質(zhì)即可得到結(jié)論;
(2)過(guò)點(diǎn)O作OF⊥BC于點(diǎn)F,得到四邊形OEBF為矩形,求出OE得到CF,即可根據(jù)勾股定理求出OF,由此得到答案.
(1)連接OE,
∵直線(xiàn)AB與⊙O的相切,
∴OE⊥AB,
在矩形A′B′CD中∠B′=90°,
由旋轉(zhuǎn)可知∠B=90°,
∴OE∥BC,
∴∠BCE=∠OEC,
∴OE=OC,
∴∠OCE=∠OEC,
∴∠OCE=∠BCE,
即CE平分∠BCD;
(2)過(guò)點(diǎn)O作OF⊥BC于點(diǎn)F,
則四邊形OEBF為矩形,
∴BF=OE=10÷2=5,
∴CF=8-5=3,
Rt△OFC中,,
∴AE=AB-BE=AB-OF=10-4=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線(xiàn)的一部分圍成的封閉圖形稱(chēng)為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線(xiàn)的解析式為y=x2﹣6x﹣16,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的線(xiàn)段CD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D是AC的中點(diǎn),連接BD,按以下步驟作圖:①分別以B,D為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P和點(diǎn)Q;②作直線(xiàn)PQ交AB于點(diǎn)E,交BC于點(diǎn)F,則BF=( 。
A. B. 1C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從如圖所示的二次函數(shù)()的圖象中,觀察得出了下面5條信息:①;②;③;④;⑤.你認(rèn)為其中正確的信息有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A為反比例函數(shù)y=(其中x>0)圖象上的一點(diǎn),在x軸正半軸上有一點(diǎn)B,OB=4.連接OA、AB,且OA=AB=2.
(1)求k的值;
(2)過(guò)點(diǎn)B作BC⊥OB,交反比例函數(shù)y=(x>0)的圖象于點(diǎn)C.
①連接AC,求△ABC的面積;
②在圖上連接OC交AB于點(diǎn)D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一機(jī)器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機(jī)器人從開(kāi)始到停止所需時(shí)間為__s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1,h2.連接AM.
∵ ∴
(思考)在上述問(wèn)題中,h1,h2與h的數(shù)量關(guān)系為: .
(探究)如圖2,當(dāng)點(diǎn)M在BC延長(zhǎng)線(xiàn)上時(shí),h1、h2、h之間有怎樣的數(shù)量關(guān)系式?并說(shuō)明理由.
(應(yīng)用)如圖3,在平面直角坐標(biāo)系中有兩條直線(xiàn)l1:,l2:y=-3x+3,若l2上的一點(diǎn)M到l1的距離是1,請(qǐng)運(yùn)用上述結(jié)論求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見(jiàn)到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.下面是該定理的證明過(guò)程(部分):
延長(zhǎng)AI交⊙O于點(diǎn)D,過(guò)點(diǎn)I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所對(duì)的圓周角相等),
∴△MDI∽△ANI.∴,∴①
如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF
∵DE是⊙O的直徑,∴∠DBE=90°.
∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對(duì)圓周角相等),
∴△AIF∽△EDB.
∴,∴②
任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請(qǐng)判斷BD和ID的數(shù)量關(guān)系,并說(shuō)明理由.
(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程
(1)x2=9;
(2)x(x+2)﹣(x+2)=0;
(3)x2﹣6x﹣4=0;
(4)x2+x﹣6=0;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com