【題目】閱讀以下材料,并解決相應(yīng)問題:

小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:

定義:如果二次函數(shù)ya1x2+b1x+c1a10,a1、b1、c1是常數(shù))與ya2x2+b2x+c2a20a2、b2c2是常數(shù))滿足a1+a20,b1b2,c1+c20,則這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求函數(shù)y2x23x+1的旋轉(zhuǎn)函數(shù),小明是這樣思考的,由函數(shù)y2x23x+1可知,a12b1=﹣3c11,根據(jù)a1+a20b1b2,c1+c20,求出a2,b2c2就能確定這個(gè)函數(shù)的旋轉(zhuǎn)函數(shù).

請(qǐng)思考小明的方法解決下面問題:

1)寫出函數(shù)yx24x+3的旋轉(zhuǎn)函數(shù).

2)若函數(shù)y5x2+m1x+ny=﹣5x2nx3互為旋轉(zhuǎn)函數(shù),求(m+n2020的值.

3)已知函數(shù)y2x1)(x+3)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)AB、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1、B1、C1,試求證:經(jīng)過點(diǎn)A1B1C1的二次函數(shù)與y2x1)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

【答案】1y=﹣x24x3;(21;(3)見解析

【解析】

1)由二次函數(shù)的解析式可得出a1,b1,c1的值,結(jié)合“旋轉(zhuǎn)函數(shù)”的定義可求出a2b2c2的值,此問得解;

2)由函數(shù)y5x2+m1x+ny=﹣5x2nx3互為“旋轉(zhuǎn)函數(shù)”,可求出m,n的值,將其代入(m+n2020即可求出結(jié)論;

3)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)AB,C的坐標(biāo),結(jié)合對(duì)稱的性質(zhì)可求出點(diǎn)A1B1,C1的坐標(biāo),由點(diǎn)A1B1,C1的坐標(biāo),利用交點(diǎn)式可求出過點(diǎn)A1,B1,C1的二次函數(shù)解析式,由兩函數(shù)的解析式可找出a1b1,c1a2,b2c2的值,再由a1+a20,b1b2c1+c20可證出經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)y2x1)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

解:(1)由yx24x+3函數(shù)可知,a11,b1=﹣4,c13,

a1+a20,b1b2c1+c20,

a2=﹣1,b2=﹣4,c2=﹣3

∴函數(shù)yx24x+3的“旋轉(zhuǎn)函數(shù)”為y=﹣x24x3;

2)∵y5x2+m1x+ny=﹣5x2nx3互為“旋轉(zhuǎn)函數(shù)”,

,

解得:,

∴(m+n2020=(﹣2+320201

3)證明:當(dāng)x0時(shí),y2x1)(x+3)=﹣6,

∴點(diǎn)C的坐標(biāo)為(0,﹣6).

當(dāng)y0時(shí),2x1)(x+3)=0,

解得:x11x2=﹣3,

∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(﹣3,0).

∵點(diǎn)A,B,C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1,B1,C1

A1(﹣1,0),B13,0),C10,6).

設(shè)過點(diǎn)A1,B1,C1的二次函數(shù)解析式為yax+1)(x3),

C10,6)代入yax+1)(x3),得:6=﹣3a

解得:a=﹣2,

過點(diǎn)A1,B1,C1的二次函數(shù)解析式為y=﹣2x+1)(x3),即y=﹣2x2+4x+6

y2x1)(x+3)=2x2+4x6,

a12,b14,c1=﹣6,a2=﹣2,b24,c26

a1+a22+(﹣2)=0,b1b24,c1+c26+(﹣6)=0,

∴經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)y2x1)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB=4,BC=2,正方形ADEF的邊長為2,F、AB在同一直線上,正方形ADEF向右平移到點(diǎn)FB重合,點(diǎn)F的平移距離為x,平移過程中兩圖重疊部分的面積為y,則yx的關(guān)系的函數(shù)圖象表示正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃一次性購進(jìn)甲、乙兩種商品共件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表所示:

進(jìn)價(jià)(元/件)

100

80

售價(jià)(元/件)

150

120

設(shè)購進(jìn)甲種商品的數(shù)量為件.

1)設(shè)進(jìn)貨成本為元,求之間的函數(shù)解析式;若購進(jìn)甲種商品的數(shù)量不少于件,則最低進(jìn)貨成本是多少元?

2)若除了進(jìn)貨成本,還要支付運(yùn)費(fèi)和銷售員工工資共元,為盡快回籠資金,該商店決定對(duì)甲種商品進(jìn)行降價(jià)銷售,每件甲種商品降價(jià),乙種商品售價(jià)不變,設(shè)銷售完甲、乙兩種商品獲得的總利潤為元.

①每件甲種商品的利潤是 元(用含的代數(shù)式表示)

②求關(guān)于的函數(shù)解析式

③當(dāng)時(shí),請(qǐng)你根據(jù)的取值范圍,說明該商店購進(jìn)甲種商品多少件時(shí),獲得的總利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年全國兩會(huì)于35日在人民大會(huì)堂開幕,某社區(qū)為了解居民對(duì)此次兩會(huì)的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機(jī)抽取部分居民進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對(duì)兩會(huì)的關(guān)注程度分成淡薄、一般、較強(qiáng)、很強(qiáng)四個(gè)層次,并繪制成如下不完整的統(tǒng)計(jì)圖:

請(qǐng)結(jié)合圖表中的信息,解答下列問題:

(1)此次調(diào)查一共隨機(jī)抽取了_____名居民;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)扇形統(tǒng)計(jì)圖中,很強(qiáng)所對(duì)應(yīng)扇形圓心角的度數(shù)為_____

(4)若該社區(qū)有1500人,則可以估計(jì)該社區(qū)居民對(duì)兩會(huì)的關(guān)注程度為淡薄層次的約有 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,ACBC,點(diǎn)OAB上,經(jīng)過點(diǎn)AOBC相切于點(diǎn)D,交AB于點(diǎn)E,若CD,則圖中陰影部分面積為( 。

A.4B.2C.2πD.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖所示,則下列選項(xiàng)錯(cuò)誤的是(

A.,是圖象上的兩點(diǎn),則

B.

C.方程有兩個(gè)不相等的實(shí)數(shù)根

D.當(dāng)時(shí),yx的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是,在x軸上任取一點(diǎn)M.連接AM,分別以點(diǎn)A和點(diǎn)M為圓心,大于的長為半徑作弧,兩弧相交于G,H兩點(diǎn),作直線GH,過點(diǎn)Mx軸的垂線l交直線GH于點(diǎn)P.根據(jù)以上操作,完成下列問題.

探究:

1)線段PAPM的數(shù)量關(guān)系為________,其理由為:________________

2)在x軸上多次改變點(diǎn)M的位置,按上述作圖方法得到相應(yīng)點(diǎn)P的坐標(biāo),并完成下列表格:

M的坐標(biāo)

P的坐標(biāo)

猜想:

3)請(qǐng)根據(jù)上述表格中P點(diǎn)的坐標(biāo),把這些點(diǎn)用平滑的曲線在圖2中連接起來;觀察畫出的曲線L,猜想曲線L的形狀是________

驗(yàn)證:

4)設(shè)點(diǎn)P的坐標(biāo)是,根據(jù)圖1中線段PAPM的關(guān)系,求出y關(guān)于x的函數(shù)解析式.

應(yīng)用:

5)如圖3,點(diǎn),,求點(diǎn)D的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快車從甲地駛往乙地,慢車從乙地駛往甲地,兩車同時(shí)出發(fā)并且在同一條公路上勻速行駛.圖中折線表示快、慢兩車之間的路程與它們的行駛時(shí)間之間的函數(shù)關(guān)系.小欣同學(xué)結(jié)合圖像得出如下結(jié)論:

快車途中停留了;快車速度比慢車速度多;

圖中;快車先到達(dá)目的地.

其中正確的是(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在初三綜合素質(zhì)評(píng)定結(jié)束后,為了了解年級(jí)的評(píng)定情況,現(xiàn)對(duì)初三某班的學(xué)生進(jìn)行了評(píng)定等級(jí)的調(diào)查,繪制了如下男女生等級(jí)情況折線統(tǒng)計(jì)圖和全班等級(jí)情況扇形統(tǒng)計(jì)圖.

(1)調(diào)查發(fā)現(xiàn)評(píng)定等級(jí)為合格的男生有2人,女生有1人,則全班共有   名學(xué)生.

(2)補(bǔ)全女生等級(jí)評(píng)定的折線統(tǒng)計(jì)圖.

(3)根據(jù)調(diào)查情況,該班班主任從評(píng)定等級(jí)為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請(qǐng)用樹形圖或表格求出剛好選中一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案