【題目】在中,,,垂足為,,分別是,邊上一點(diǎn).
(1)求證:;
(2)若,,求的度數(shù).
【答案】(1)見(jiàn)解析 (2) 90°
【解析】
(1)由已知條件易證Rt△ADC∽R(shí)t△CDB,由此即可得到所求結(jié)論;
(2)由已知條件易得結(jié)合(1)中所得可得,這樣結(jié)合∠ACD=∠B可得△CED∽△BFD,由此可得∠CDE=∠BDF,從而可得∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.
(1)∵CD⊥AB,
∴∠A+∠ACD=90° ,
又∵∠A+∠B=90° ,
∴∠B=∠ACD ,
∴Rt△ADC∽Rt△CDB,
∴;
(2)∵CE=AC,BF=BC,
∴,
又∵由(1)可知:,
∴,
又∵∠ACD=∠B,
∴△CED∽△BFD;
∴∠CDE=∠BDF;
∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).
解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫(huà)出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)三國(guó)時(shí)期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長(zhǎng)為14,正方形IJKL的邊長(zhǎng)為2,且IJ//AB,則正方形EFGH的邊長(zhǎng)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn).直線經(jīng)過(guò)點(diǎn)、,直線,交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求直線的解析表達(dá)式;
(3)求的面積;
(4)在直線上存在異于點(diǎn)的另一個(gè)點(diǎn),使得與的面積相等,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成系列問(wèn)題:
(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.
(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)E到A、C兩點(diǎn)的距離相等.并在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù).
(3)在數(shù)軸上有一點(diǎn)F,滿足點(diǎn)F到點(diǎn)A與點(diǎn)F到點(diǎn)C的距離和是9,則點(diǎn)F表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點(diǎn)在AD邊上以每秒1cm的速度從A向D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過(guò)點(diǎn)E作 EF∥AD,與AC、DC 分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連結(jié)DE、 EH、DH、FH.下列結(jié)論:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若,則.其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,4)三點(diǎn),其中a,b滿足關(guān)系式a=+2.若在第二象限內(nèi)有一點(diǎn)P(m,1),使四邊形ABOP的面積與三角形ABC的面積相等,則點(diǎn)P的坐標(biāo)為( )
A. (-3,1) B. (-2,1) C. (-4,1) D. (-2.5,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com