【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

【答案】8

【解析】

連接AD,由于ABC是等腰三角形,點DBC邊的中點,故ADBC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.

解:如圖,連接AD,

∵△ABC是等腰三角形,點DBC邊的中點,
ADBC,∴SABC=BCAD=×4×AD=12

解得AD=6,

EF是線段AB的垂直平分線,

∴點B關(guān)于直線EF的對稱點為點A,

AD的長為BM+MD的最小值,
∴△BDM的周長最短=BM+MD+BD=AD+BC=6+×4=6+2=8cm


故填:8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為了解政府調(diào)整水價方案的社會反響,隨機訪問了自己居住小區(qū)的部分居民,就每月每戶的用水量調(diào)價對用水行為改變兩個問題進行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1、圖2.

小明發(fā)現(xiàn)每月每戶的用水量為5 -35 之間,有8戶居民對用水價格調(diào)價漲幅抱無所謂,不會考慮用水方式的改變.根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:

1 ,小明調(diào)查了 戶居民,并補全圖1;

2)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?

3)如果小明所在小區(qū)有1800戶居民,請你估計視調(diào)價漲幅采取相應(yīng)的用水方式改變的居民戶數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標系中描出各點,畫出△ABC

(2)求△ABC的面積;

(3)設(shè)點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號內(nèi):

-35,0.1,,0,,1,4.01001000···,22,-0.3,,

正數(shù):{ ,···};

整數(shù):{ ,···};

負分數(shù):{ ,···};

非負整數(shù):{ ,···}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能推出ABC是等腰三角形的是( 。

A. B=∠CB. ADBC,∠BAD=∠CAD

C. ADBC,BDCDD. ADBC,∠BAD=∠ACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校八、九兩個年級各有學(xué)生180人,為了解這兩個年級學(xué)生的體質(zhì)健康情況,進行了抽樣調(diào)查,過程如下,請補充完整.

收集數(shù)據(jù)

從八、九兩個年級各隨機抽取名學(xué)生,進行了體質(zhì)健康測試,測試成績(百分制)如下:

八年級

九年級

整理、描述數(shù)據(jù)

按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

八年級

0

0

1

11

1

九年級

1

0

0

7

(說明:成績分及以上為體質(zhì)健康優(yōu)秀,~分為體質(zhì)健康良好,~分為體質(zhì)健康合格,分以下為體質(zhì)健康不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級

33.6

九年級

52.1

請將以上兩個表格補充完整;

得出結(jié)論

(1)估計九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為__________;

(2)可以推斷出_______年級學(xué)生的體質(zhì)健康情況更好一些,理由為_________________.(至少從兩個不同的角度說明推斷的合理性).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小彤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小彤探究的過程,請補充完整:

x

-4

-3.5

-3

-2

-1

0

1

2

3

3.5

4

y

0

m

(1)求m的值為

(2)如圖,在平面直角坐標系x0y 中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出了圖象的一部分,請根據(jù)剩余的點補全此函數(shù)的圖象;

(3)方程實數(shù)根的個數(shù)為 ;

(4)觀察圖象,寫出該函數(shù)的一條性質(zhì) ;

(5)在第(2)問的平面直角坐標系中畫出直線,根據(jù)圖象寫出方程的一個正數(shù)根約為 (精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)喜歡爬山的同學(xué)都知道,很多名山上都有便于游人觀光的索道,如圖所示,山的高度AC800 m,從山上A與山下B處各建一索道口,BC=1 500 m,一游客從山下索道口坐纜車到山頂,知纜車每分鐘走50 m,那么大約多長時間后該游客才能到達山頂?說明理由.

2)如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高度CD(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:我們把表格中字母的和所得的多項式稱為“有特征多項式”,例如:

1格的“有特征多項式”為,

2格的“有特征多項式”為,,

回答下列問題:

1)第3格“有特征多項式”為__________4格的“有特征多項式”為____________

格的“有特征多項式”為__________

2)若第格的特征多項式與多項式的和不含有項,求此“有特征多項式”.

序號

1

2

3

4

……

圖形

……

查看答案和解析>>

同步練習(xí)冊答案