【題目】初三(1)班要從2男2女共4名同學中選人做晨會的升旗手.
(1)若從這4人中隨機選1人,則所選的同學性別為男生的概率是 .
(2)若從這4人中隨機選2人,求這2名同學性別相同的概率.
【答案】(1);(2)P(這2名同學性別相同) =.
【解析】試題分析:(1)用男生人數(shù)2除以總人數(shù)4即可得出答案;
(2)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.
解:(1);
(2)從4人中隨機選2人,所有可能出現(xiàn)的結果有:(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),共有12種,它們出現(xiàn)的可能性相同,
所以滿足“這2名同學性別相同”(記為事件A)的結果有種,所以P(A)= =.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E是BC中點,點O在AB上,以OB為半徑的⊙O經過點AE上的一點M,分別交AB,BC于點F,G,連BM,此時∠FBM=∠CBM.
(1)求證:AM是⊙O的切線;
(2)當BC=6,OB:OA=1:2 時,求,AM,AF圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋里裝有3個小球,其中2個紅球,1個白球,它們除顏色外其余都相同.
(1)求摸出1個小球是白球的概率;
(2)摸出1個小球,記下顏色后放回,并攪均,再摸出1個小球.求兩次摸出的小球恰好顏色不同的概率.(要求畫樹狀圖或列表)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市出租車收費標準:3 km以內(含3 km)起步價為8元,超過3 km后每1 km加收1.8元.
(1)若小明坐出租車行駛了6 km,則他應付多少元車費?
(2)如果用s表示出租車行駛的路程,m表示出租車應收的車費,請你表示出s與m之間的數(shù)量關系(s>3).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結BE,取BE的中點M,連結CM.過點C作CG⊥BE交AD于點G,連結EG、MG.若CM=3,則四邊形GMCE的面積為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有黑、白兩種顏色的球共100只,這些球除顏色外其余完全相同.小穎做摸球實驗,攪勻后,她從盒子里隨機摸出一只球記下顏色后,再把球放回盒子中,不斷重復上述過程,如表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 70 | 124 | 190 | 325 | 538 | 670 | 2004 |
摸到白球的頻率 | 0.70 | 0.62 | 0.633 | 0.65 | 0.6725 | 0.670 | 0.668 |
(1)若從盒子里隨機摸岀一只球,則摸到白球的概率的估計值為 ;(精確到0.01)
(2)試估算盒子里黑球有 只;
(3)某小組在“用頻率估計概率”的試驗中,符合這一結果的試驗最有可能的是 .
A.從一副撲克牌中任意抽取一張,這張牌是“紅色的”
B.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”
C.擲一個質地均勻的正六面體骰子(面的點數(shù)標記分別為1到6),落地時面朝上的點數(shù)小于5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點 P 從 A 點出發(fā)沿 A-C-B 路徑向終點運動,終點為 B點;點 Q 從 B 點出發(fā)沿 B-C-A 路徑向終點運動,終點為 A 點,點 P 和 Q 分別以 1cm/s 和 xcm / s 的運動速度 同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過 P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.
(1)如圖,當 x 2 時,設點 P 運動時間為 ts ,當點 P 在 AC 上,點 Q 在 BC 上時:
①用含 t 的式子表示 CP 和 CQ,則 CP= cm,CQ= cm;
②當 t 2 時,PEC 與QFC 全等嗎?并說明理由;
(2)請問:當 x 3 時,PEC 與QFC 有沒有可能全等?若能,直接寫出符合條件的 t 的值;若不能,請說明 理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F是四邊形ABCD對角線AC上的兩點,AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com