【題目】如圖①,小慧同學(xué)把一個(gè)正三角形紙片(即OAB)放在直線l1OA邊與直線l1重合,然后將三角形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將三角形紙片AO1B1,繞點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)A運(yùn)動(dòng)到了點(diǎn)A1處,點(diǎn)O1運(yùn)動(dòng)到了點(diǎn)O2處(即頂點(diǎn)O經(jīng)過(guò)上述兩次旋轉(zhuǎn)到達(dá)O2處)小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過(guò)程中,頂點(diǎn)O運(yùn)動(dòng)所形成的圖形是兩段圓弧,即,頂點(diǎn)O所經(jīng)過(guò)的路程是這兩段圓弧的長(zhǎng)度之和,并且這兩段圓弧與直線l1圍成的圖形面積等于扇形的面積、AO1B1的面積和扇形B1O1O2的面積之和。

小慧進(jìn)行類比研究:如圖②,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,此時(shí)點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B2處,小慧又將正方形紙片AO1C1B1繞頂點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)90°,。按上述方法經(jīng)過(guò)若干次旋轉(zhuǎn)后,她提出了如下問(wèn)題:

問(wèn)題①:若正方形紙片OABC按上述方法經(jīng)過(guò)3次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程,并求頂點(diǎn)O在此運(yùn)動(dòng)過(guò)程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OABC按上述方法經(jīng)過(guò)5次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程;

問(wèn)題②:正方形紙片OABC按上述方法經(jīng)過(guò)多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是?

【答案】(1) (2) 81

【解析】整體分析

正方形紙片OABC經(jīng)過(guò)3次旋轉(zhuǎn),旋轉(zhuǎn)中心分別為點(diǎn)A,BC,半徑分別為1, ,1;頂點(diǎn)O在此過(guò)程中經(jīng)過(guò)的圖形與直線l2圍成的圖形有2個(gè)半徑為1的扇形,1個(gè)半徑為的扇形和2個(gè)直角邊長(zhǎng)為1的等腰直角三角形;正方形紙片OABC經(jīng)過(guò)5次旋轉(zhuǎn),頂點(diǎn)O在此過(guò)程中經(jīng)過(guò)3段半徑為1的弧和1段半徑為的。正方形經(jīng)過(guò)四次旋轉(zhuǎn)為一個(gè)周期,計(jì)算出正方形經(jīng)過(guò)四次旋轉(zhuǎn)時(shí)點(diǎn)O經(jīng)過(guò)的路程與作比較即可求解.

①如圖,正方形紙片OABC經(jīng)過(guò)3次旋轉(zhuǎn),頂點(diǎn)O運(yùn)動(dòng)所形成的圖形是三段圓弧

∴頂點(diǎn)O在此過(guò)程中經(jīng)過(guò)的路程為: ,

頂點(diǎn)O在此過(guò)程中經(jīng)過(guò)的圖形與直線l2圍成的圖形面積為: 。

正方形紙片OABC經(jīng)過(guò)5次旋轉(zhuǎn),頂點(diǎn)O在此過(guò)程中經(jīng)過(guò)的路程為: ,

②正方形紙片OABC經(jīng)過(guò)3次旋轉(zhuǎn),頂點(diǎn)O在此過(guò)程中經(jīng)過(guò)的路程為: ,

根據(jù)第四次正方形旋轉(zhuǎn)時(shí)O點(diǎn)不動(dòng),也就是此時(shí)也是正方形紙片OABC經(jīng)過(guò)4次旋轉(zhuǎn)的路程為

又∵,

∴正方形紙片OABC經(jīng)過(guò)了20×4+1=81次旋轉(zhuǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題

一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形.

兩組對(duì)角分別相等的四邊形是平行四邊形.

一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形.

一組對(duì)邊平行,一條對(duì)角線被另一條對(duì)角線平分的四邊形是平行四邊形.

1)上述四個(gè)命題中,是真命題的是   (填寫序號(hào));

2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明.(寫出已知、求證,并完成證明)

已知:   

求證:   

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A,,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.

1)求此反比例函數(shù)的解析式;

2)將平行四邊形ABCD沿x軸翻折得到平行四邊形,請(qǐng)你通過(guò)計(jì)算說(shuō)明點(diǎn)在雙曲線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,3))、B(3,-1),點(diǎn)Mx軸上,當(dāng)AM-BM最大時(shí),點(diǎn)M的坐標(biāo)為

A. (2,0) B. (2.5,0) C. (4,0), D. (4.5,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點(diǎn)C,DE三點(diǎn)在同一條直線上,連結(jié)BDBE.以下四個(gè)結(jié)論:①BD=CE;BDCE;③∠ACE+DBC=45°④∠ACE=DBC其中結(jié)論正確的個(gè)數(shù)有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線

1求證:無(wú)論為任何實(shí)數(shù),拋物線與軸總有兩個(gè)交點(diǎn);

2若A、B是拋物線個(gè)不同點(diǎn)求拋物線的表達(dá)的值;

3若反比例函數(shù)的圖象與2中的拋物線在第一象限內(nèi)的交點(diǎn)的橫坐標(biāo)為且滿足2<<3,k的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A(-4,0),B(6,0),C(2,4),D(-3,2).

(1)求四邊形ABCD的面積;

(2)y軸上找一點(diǎn)P,使△APB的面積等于四邊形的一半,P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來(lái),,于是可用來(lái)表示的小數(shù)部分.請(qǐng)解答下列問(wèn)題:

1的整數(shù)部分是________,小數(shù)部分是________.

2)如果的小數(shù)部分為的整數(shù)部分為,求的值.

3)已知:,其中是整數(shù),且,求的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作于點(diǎn)E.若,CD=5,.

(1)求BD的長(zhǎng)

(2)AE與BE相等嗎?說(shuō)明理由。

(3)求△ABC的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案