【題目】二次函數y=3x2+1和y=3(x﹣1)2 , 以下說法: ①它們的圖象都是開口向上;
②它們的對稱軸都是y軸,頂點坐標都是原點(0,0);
③當x>0時,它們的函數值y都是隨著x的增大而增大;
④它們的開口的大小是一樣的.
其中正確的說法有( )
A. 1個 B. 2 C. 3 D. 4個
科目:初中數學 來源: 題型:
【題目】(1)求一次函數y=2x-2的圖象l1與y=x-1的圖象l2的交點P的坐標.
(2)求直線與軸交點A的坐標; 求直線與x軸的交點B的坐標;
(3)求由三點P、A、B圍成的三角形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是作一個角的角平分線的方法:以的頂點為圓心,以任意長為半徑畫弧,分別交于兩點,再分別以為圓心,大于長為半徑作畫弧,兩條弧交于點,作射線,過點作交于點.
(1)若,求的度數;
(2)若,垂足為,求證: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當t=0.5時,求線段QM的長;
(2)當M在AB上運動時,是否可以使得以C、P、Q為頂點的三角形為直角三角形?若可以,請求t的值;若不可以,請說明理由.
(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄?/span>是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了100 m,此時自B處測得建筑物頂部的仰部角是45°.已知測角儀的高度是1.5 m,請你計算出該建筑物的高度.(取≈1.732,結果精確到1 m)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.
(1)求證:△BOE≌△DOF;
(2)若,則四邊形ABCD是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,在邊長為1的正方形的邊上有—動點沿正方形運動一周,則的縱坐標與點走過的路程之間的函數關系用圖象表示大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線AB∥CD,點P在兩平行線之間,點E. F分別在AB、CD上,連接PE,PF.嘗試探究并解答:
(1)若圖1中∠1=36°,∠2=63°,則∠3=___;
(2)探究圖1中∠1,∠2與∠3之間的數量關系,并說明理由;
(3)如圖2所示,∠1與∠3的平分線交于點P`,若∠2=α,試求∠EP`F的度數(用含α的代數式表示);
(4)如圖3所示,在圖2的基礎上,若∠BEP與∠DFP的平分線交于點P,∠BEP與∠DFP的平分線交于點P…∠BEP 與∠DFP的平分線交于點P,且∠2=α,直接寫出∠EPF的度數(用含α的代數式表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com