【題目】如圖,已知射線,點從B點出發(fā),以每秒1個單位長度沿射線向右運動;同時射線繞點順時針旋轉一周,當射線停止運動時,點隨之停止運動.以為圓心,1個單位長度為半徑畫圓,若運動兩秒后,射線與恰好有且只有一個公共點,則射線旋轉的速度為每秒______度.
【答案】30或60
【解析】
射線與恰好有且只有一個公共點就是射線與相切,分兩種情況畫出圖形,利用圓的切線的性質和30°角的直角三角形的性質求出旋轉角,然后根據(jù)旋轉速度=旋轉的度數(shù)÷時間即得答案.
解:如圖1,當射線與在射線BA上方相切時,符合題意,設切點為C,連接OC,則OC⊥BP,
于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,
此時射線旋轉的速度為每秒60°÷2=30°;
如圖2,當射線與在射線BA下方相切時,也符合題意,設切點為D,連接OD,則OD⊥BP,
于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,
此時射線旋轉的速度為每秒120°÷2=60°;
故答案為:30或60.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,.線段與線段存在一種變換關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,則這個旋轉中心的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標;
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若點M在第一象限內拋物線上一動點,連接MA、MB,當點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣6x+4的頂點A在直線y=kx﹣2上.
(1)求直線的函數(shù)表達式;
(2)現(xiàn)將拋物線沿該直線方向進行平移,平移后的拋物線的頂點為A′,與直線的另一交點為B′,與x軸的右交點為C(點C不與點A′重合),連接B′C、A′C.
。┤鐖D,在平移過程中,當點B′在第四象限且△A′B′C的面積為60時,求平移的距離AA′的長;
ⅱ)在平移過程中,當△A′B′C是以A′B′為一條直角邊的直角三角形時,求出所有滿足條件的點A′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,邊BC長為18,高AD長為12
(1)如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;
(2)設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,CE平分∠BCD,且交AD于點E,AF∥CE,且交BC于點F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠B=52°,求∠1的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積為60的平行四邊形ABCD中,過點A作AE垂直于直線BC于點E,作AF垂直于直線CD于點F,若AB=10,BC=12,則CE+CF的值為( )
A. 22-11B.
C. 或D. 或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,若PA與軸交于點Q,且,則的值分別是( )
A.B.2,1C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與x軸交于A,B兩點(A在B的左側),與y軸交于點C,頂點為D.
(1)請直接寫出點A,C,D的坐標;
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標;
(3)如圖(2),F為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com