【題目】如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側面示意圖,立桿ABCD相交于點O,BD兩點立于地面,經(jīng)測量:

AB=CD=136cmOA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm

1)求證:AC∥BD;

2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);

3)小紅的連衣裙穿在衣架后的總長度達到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.

(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,

tan61.9°≈0.553;可使用科學記算器)

【答案】1)見解析(261.9°3)會拖落到地面,理由見解析

【解析】

(1)根據(jù)等角對等邊得出∠OAC=∠OCA=(180°﹣∠BOD)和∠OBD=∠ODB=(180°﹣∠BOD),進而利用平行線的判定得出即可;

(2)首先作OM⊥EF于點M,則EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度數(shù);

(3)首先證明Rt△OEM∽Rt△ABH,進而得出AH的長即可.

(1)證明:證法一:∵AB.CD相交于點O,

∴∠AOC=∠BOD…1

∵OA=OC,

∴∠OAC=∠OCA=(180°﹣∠BOD),

同理可證:∠OBD=∠ODB=(180°﹣∠BOD),

∴∠OAC=∠OBD,…2

∴AC∥BD,…3

證法二:AB=CD=136cm,OA=OC=51cm,

∴OB=OD=85cm,

∵∠AOC=∠BOD

∴△AOC∽△BOD,

∴∠OAC=∠OBD;

∴AC∥BD

(2)解:在△OEF中,OE=OF=34cm,EF=32cm;

OM⊥EF于點M,則EM=16cm;

∴cos∠OEF=0.471,

用科學記算器求得∠OEF=61.9°;

(3)解法一:小紅的連衣裙會拖落到地面;

Rt△OEM中,=30cm,

過點AAH⊥BD于點H,

同(1)可證:EF∥BD,

∴∠ABH=∠OEM,則Rt△OEM∽Rt△ABH,

所以:小紅的連衣裙垂掛在衣架后的總長度122cm>曬衣架的高度AH=120cm.

解法二:小紅的連衣裙會拖落到地面;

同(1)可證:EF∥BD,∴∠ABD=∠OEF=61.9°;

過點AAH⊥BD于點H,在Rt△ABH

AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm

所以:小紅的連衣裙垂掛在衣架后的總長度122cm>曬衣架的高度AH=120cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為測量大樓的高度,從距離大樓底部30米處的,有一條陡坡公路,車輛從沿坡度,坡面長13米的斜坡到達后,觀測到大樓的頂端的仰角為30°,則大樓的高度為(  )米.

(精確到0.1米,,

A.26.0B.29.2C.31.1D.32.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一座鋼結構橋梁的框架是ABC,水平橫梁BC18米,中柱AD6米,其中DBC的中點,且ADBC.

(1)求sinB的值;

(2)現(xiàn)需要加裝支架DE、EF,其中點EAB上,BE=2AE,且EFBC,垂足為點F,求支架DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,ABC=90°,AB=BC=,ABC繞點C逆時針旋轉60°,得到MNC,連接BM,BM的長是__.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:(1)如圖①,在RtABC中,ABAC,DBC邊上一點(不與點BC重合),將線段AD繞點A逆時針旋轉90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關系式為   ;

探索:(2)如圖②,在RtABCRtADE中,ABAC,ADAE,將△ADE繞點A旋轉,使點D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關系,并證明你的結論;

應用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9,CD3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,點O是對角線AC的中點,過點OAC的垂線,分別交AD、BC于點EF,連結AF、CE

1)求證:△AOE≌△COF

2)試判斷四邊形AFCE的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市高新區(qū)某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的售價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關系:

1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為60件?

2)設第x天生產(chǎn)的產(chǎn)品成本為P/件,Px的函數(shù)關系圖象如圖,工人甲第x天創(chuàng)造的利潤為W元,求Wx的函數(shù)關系式,第幾天時,利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是線段MN上的兩點,MN4,MA1,MB1.以A為中心順時針旋轉點M,以B為中心逆時針旋轉點N,使M、N兩點重合成一點C,構成△ABC,設ABx.若以點B為圓心,1.6為半徑作圓B,使點M和點N都在B外,則x的取值范圍是(  )

A.1x2B.0.6x1.6C.1x1.6D.1x1.4

查看答案和解析>>

同步練習冊答案