分析 (1)將點(diǎn)A的坐標(biāo)代入反比例函數(shù)的解析式可得k2=4,進(jìn)而求得:m=-12,即A(-4,3),B(6,-2)在直線y1=kx+b上,將其坐標(biāo)代入即求可得一次函數(shù)的解析式.
(2)已知兩函數(shù)的解析式、圖象,易得y1與y2的大小關(guān)系.
解答 解:(1)∵A(-4,3)在y=$\frac{m}{x}$上
∴3=$\frac{m}{-4}$,
m=-12
∵B(6,n)在y=-$\frac{12x}{\;}$上
所以n=-$\frac{12}{6}$,
∴n=-2,
∴B(6,-2)
∴$\left\{\begin{array}{l}{3=-4k+3}\\{-2=6k+3}\end{array}\right.$,
解后得$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=1}\end{array}\right.$,
∴${y}_{1}=-\frac{1}{2}x+1$,${y}_{2}=-\frac{12}{x}$;
(2)當(dāng)x<-4或0<<2時,y1>y2.
點(diǎn)評 本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,也考查了觀察函數(shù)圖象的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4 | C. | $\frac{4π}{3}$ | D. | $\frac{2\sqrt{3}π}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com