【題目】如圖,在△ABC中,∠C=90°,∠A=30°,D為AB上一點,且AD:DB=1:3,DE⊥AC于點E,連接BE,則tan∠CBE的值等于(

A. B. C. D.

【答案】C

【解析】

根據(jù)題意和30°角所對的直角邊與斜邊的關(guān)系,設(shè)AB=4a,可以用a分別表示出CECB的值,從而可以求得tanCBE的值.

設(shè)AB=4a,

∵在ABC中,∠C=90°,A=30°,DAB上一點,且AD:DB=1:3,

BC=2a,AC=2a,AD:AB=1:4,

∵∠C=90°,DEAC,

∴∠AED=90°,

∴∠AED=C,

DEBC,

∴△AED∽△ACB,

,

AE=a=,

EC=AC-AE=2a,

tanCBE=,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是直角三角形ABC斜邊上的中線,AEADCB延長線于E,則圖中一定相似的三角形是(  

A. AED與△ACB B. AEB與△ACD C. BAE與△ACE D. AEC與△DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB的坐標(biāo)分別為(-2,3)和(1,3),拋物線y=ax2+bx+ca0)的 頂點在線段AB上運動時,形狀保持不變,且與x軸交于CD兩點(CD的左側(cè)),給出下列結(jié)論:①c3②當(dāng)x<-3時,yx的增大而增大;③若點D的橫坐標(biāo)最大值為5,則點C的橫坐標(biāo)最小值為-5④當(dāng)四邊形ACDB為平行四邊形時,a.其中正確的是(

A. ②④ B. ②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為(

A. B. 1 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價與一件乙種玩具的進(jìn)價的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價分別是多少元?

2)商場計劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)均為整數(shù)的點叫做整點.已知反比例函數(shù)y=(m<0)與y=x2﹣4在第四象限內(nèi)圍成的封閉圖形(包括邊界)內(nèi)的整點的個數(shù)為2,則實數(shù)m的取值范圍為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動小組要測量山坡上的電線桿PQ的高度他們采取的方法是:先在地面上的點A處測得桿頂端點P的仰角是45°,再向前走到B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°,這時只需要測出AB的長度就能通過計算求出電線桿PQ的高度你同意他們的測量方案嗎?若同意,畫出計算時的圖形簡要寫出計算的思路,不用求出具體值;若不同意,提出你的測量方案,并簡要寫出計算思路

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】吳京同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對一個新函數(shù)的圖象和性質(zhì)進(jìn)行了如下探究,請幫他把探究過程補(bǔ)充完整.

1)該函數(shù)的自變量的取值范圍是______

2)列表:

0

1

2

3

4

5

6

表中________,_______

3)描點、連線

在下面的格點圖中,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系中,描出上表中各對對應(yīng)值為坐標(biāo)的點(其中為橫坐標(biāo),為縱坐標(biāo)),并根據(jù)描出的點畫出該函數(shù)的圖象:

4)觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):

_______________________________________;

_______________________________________

5)函數(shù)與直線的交點有2個,那么的取值范圍_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊答案