【題目】某廠將四種型號的空調(diào)銷售額的情況繪制成了圖①和圖②兩幅尚不完整的統(tǒng)計圖.

1)請補全圖②的條形統(tǒng)計圖;

2)為了應(yīng)對激烈的市場競爭,該廠決定降價促銷,四種型號的空調(diào)分別降價,因此該廠宣稱其產(chǎn)品平均降價,你認(rèn)為該廠的說法正確嗎?請通過計算說明理由;

3)為進一步促銷,該廠決定從這四種型號的空調(diào)中任意選取兩種型號的空調(diào)降價銷售,請用樹狀圖或列表法求出降價空調(diào)中含D型號空調(diào)的概率.

【答案】1)見解析;(2)不正確,理由見解析;(3

【解析】

解:(1)各型號空調(diào)的總銷售額為:(億元),

A型號空調(diào)的銷售額為:(億元)

B型號空調(diào)的銷售額為:(億元)

補全條形統(tǒng)計圖如解圖:

(2)根據(jù)題意,得該廠其產(chǎn)品平均降價為:

,

該廠的說法不正確;

(3)畫樹狀圖,如解圖:

根據(jù)樹狀圖可得,從這四種型號空調(diào)中任意選取兩種型號的空調(diào)降價銷售,降價空調(diào)中含D型號空調(diào)的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:

b2=4ac;abc>0;a>c;4a﹣2b+c>0,其中正確的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于,兩點,與軸相交于點,,,直線是拋物線的對稱軸,在直線右側(cè)的拋物線上有一動點,連接,,,

1)求拋物線的函數(shù)表達(dá)式;

2)若點軸的下方,當(dāng)的面積是時,求的面積;

3)在(2)的條件下,點軸上一點,點是拋物線上一動點,是否存在點,使得以點,,,為頂點,以為一邊的四邊形是平行四邊形,若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個邊長都為的小正方形組成的網(wǎng)格中,小正方形的頂點叫做格點.線段的端點均在格點上.

1)線段的長度等于 ;

2)將線段繞點逆時針旋轉(zhuǎn)得到,在圖中畫出,并連結(jié)

3)在線段上確定一點連結(jié),使得的面積比為

說明:以上作圖只用無刻度的直尺畫圖,保留畫圖痕跡,不寫畫法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨州市新水一橋(如圖1)設(shè)計靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計長度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.

(1)求最短的斜拉索DE的長;

(2)求最長的斜拉索AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玩具店進了一排黑白塑料球,共5箱,每箱的規(guī)格、數(shù)量都相同,其中每箱中裝有黑白兩種顏色的塑料球共3000個,為了估計每箱中兩種顏色球的個數(shù),隨機抽查了一箱,將箱子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回箱子中,多次重復(fù)上述過程后,發(fā)現(xiàn)摸到黑球的概率在0.8附近波動,則此可以估計這批塑料球中黑球的總個數(shù),請將黑球總個數(shù)用科學(xué)記數(shù)法表示約為________個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某旅游景區(qū)為方便游客,修建了一條東西走向的木棧道 AB ,棧道 AB 與景區(qū)道路CD 平行.在 C 處測得棧道一端 A 位于北偏西 42°方向,在 D 處測得棧道另一端 B 位于北偏西 32°方向.已知 CD 120 m BD 80 m ,求木棧道 AB 的長度(結(jié)果保留整數(shù))

(參考數(shù)據(jù):,,,,,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交,其中一個交點的橫坐標(biāo)是2

1)求反比例函數(shù)的表達(dá)式;

2)將一次函數(shù)的圖象向下平移2個單位,求平移后的圖象與反比例函數(shù)圖象的交點坐標(biāo);

3)直接寫出一個一次函數(shù),使其過點,且與反比例函數(shù)的圖象沒有公共點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如表是一個4×4(44列共16數(shù)組成)的奇妙方陣,從這個方陣中選四個數(shù),而且這四個數(shù)中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個數(shù)相加,其和是定值,則方陣中第三行三列的數(shù)是( 。

30

2sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習(xí)冊答案