科目: 來源: 題型:
【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點C與公路上的?空A的距離為300米,與公路上的另一停靠站B的距離為400米,且CA⊥CB,如圖所示.為了安全起見,爆破點C周圍半徑250米范圍內(nèi)不得進入,問在進行爆破時,公路AB段是否有危險?請用你學(xué)過的知識加以解答.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點P是AOB內(nèi)任意一點,OP=10cm,點P與點關(guān)于射線OA對稱,點P與點關(guān)于射線OB對稱,連接交OA于點C,交OB于點D,當(dāng)△PCD的周長是10cm時,∠AOB的度數(shù)是______度。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某建筑工程隊利用一面墻(墻的長度不限),用40米長的籬笆圍成一個長方形的倉庫.
(1)求長方形的面積是150平方米,求出長方形兩鄰邊的長;
(2)能否圍成面積220平方米的長方形?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,AB=5.點P從點A出發(fā),以每秒5個單位
長度的速度沿AC方向運動,過點P作PQ⊥AB于點Q,當(dāng)點Q和點B重合時,點P停止運動,以AP和AQ為邊作APHQ.設(shè)點P的運動時間為t秒(t>0)
(1)線段PQ的長為 .(用含t的代數(shù)式表示)
(2)當(dāng)點H落在邊BC上時,求t的值.
(3)當(dāng)APHQ與△ABC的重疊部分圖形為四邊形時,設(shè)四邊形的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)過點C作直線CD⊥AB于點D,當(dāng)直線CD將APHQ分成兩部分圖形的面積比為1:7時,直接寫出t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們知道,解一元一次方程,可以把它轉(zhuǎn)化為兩個一元一次方程來解,其實用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)用“轉(zhuǎn)化”思想求方程=x的解.
(3)如圖,已知矩形草坪ABCD的長AD=14m,寬AB=12m,小華把一根長為28m的繩子的一端固定在點B處,沿草坪邊沿BA、AD走到點P處,把長繩PB段拉直并固定在點P處,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C處,求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com