相關習題
 0  361594  361602  361608  361612  361618  361620  361624  361630  361632  361638  361644  361648  361650  361654  361660  361662  361668  361672  361674  361678  361680  361684  361686  361688  361689  361690  361692  361693  361694  361696  361698  361702  361704  361708  361710  361714  361720  361722  361728  361732  361734  361738  361744  361750  361752  361758  361762  361764  361770  361774  361780  361788  366461 

科目: 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點OAEBCCB延長線于ECFAEAD延長線于點F

1)求證:四邊形AECF為矩形;

2)連接OE,若AE=4,AD=5,求tanOEC的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】“勤勞”是中華民族的傳統(tǒng)美德,學校要求同學們在家里幫助父母做一些力所能及的家務.在本學期開學初,小穎同學隨機調查了部分同學寒假在家做家務的總時間,設被調查的每位同學寒假在家做家務的總時間為x小時,將做家務的總時間分為五個類別:A0x10),B10x20),C20x30),D30x40),Ex40).并將調查結果制成如下兩幅不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次共調查了   名學生;

2)請根據(jù)以上信息直接在答題卡中補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中m的值是   ,類別D所對應的扇形圓心角的度數(shù)是   度;

4)若該校有800名學生,根據(jù)抽樣調查的結果,請你估計該校有多少名學生寒假在家做家務的總時間不低于20小時.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,△ABC為等邊三角形,點A的坐標為(0,4),點Bx軸上,點C在反比例函數(shù)的圖象上,則點B的坐標為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的平分線AD與邊BC的垂直平分線ED相交于點D,過點DDFACAC延長線于點F,若AB=8,AC=4,則CF的長為_________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方形ABCD中,FAB上一點,EBC延長線上一點,且AFEC,連結EF,DE,DFMFE中點,連結MC,設FEDC相交于點N.則4個結論:①DEDF;②∠CME=CDE;③DG2=GN GE;④若BF2,則正確的結論有( )個.

A.4B.3C.2D.1

查看答案和解析>>

科目: 來源: 題型:

【題目】下列命題是假命題的是( ).

A.三角形的外心到三角形三個頂點的距離相等.

B.如果等腰三角形的兩邊長分別是56,那么這個等腰三角形的周長為16

C.將一次函數(shù)y5x1的圖象向上平移3個單位,所得直線不經過第四象限.

D.若關于x的一元一次不等式組無解,則m的取值范圍是m1

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,以點B為圓心,適當長為半徑的畫弧,分別交BA,BC于點M、N;再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線BPAC于點D,則下列說法中不正確的是()

A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點GCE的延長線交DA的延長線于點H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,線段ABO的直徑,C,EO,,CDAB,垂足為點D,連接BE,BE與線段CD相交于點F

1)求證CFBF;

2)若cosABE,AB的延長線上取一點M,使BM4,⊙O的半徑為6.求證直線CMO的切線

查看答案和解析>>

同步練習冊答案