科目: 來源: 題型:
【題目】如圖,三根同樣的繩子AA1、BB1、CC1穿過一塊木板,姐妹兩人分別站在木板的左、右兩側(cè),每次各自選取本側(cè)的一根繩子,每根繩子被選中的機會相等.
(1)問:“姐妹兩人同時選中同一根繩子”這一事件是 事件,概率是 ;
(2)在互相看不見的條件下,姐姐先將左側(cè)A、C兩個繩端打成一個連結(jié),則妹妹從右側(cè)A1、B1、C1三個繩端中隨機選兩個打一個結(jié)(打結(jié)后仍能自由地通過木孔);請求出“姐姐抽動繩端B,能抽出由三根繩子連結(jié)成一根長繩”的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③m為任意實數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中正確的有( 。
A.①②③B.②④C.②⑤D.②③⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】古希臘時期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(,稱為黃金比例),如圖,著名的“斷臂維納斯”便是如此,此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是,若某人的身材滿足上述兩個黃金比例,且頭頂至咽喉的長度為,則其升高可能是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,垂足為E,連接DF,則∠CDF等于()
A.50°B.60°C.70°D.80°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線: 與軸、軸分別交于點B、C,經(jīng)過B、C兩點的拋物線與軸的另一個交點為A.
(1)求該拋物線的解析式;
(2)若點P在直線下方的拋物線上,過點P作PD∥軸交于點D,PE∥軸交于點E,
求PD+PE的最大值;
(3)設(shè)F為直線上的點,以A、B、P、F為頂點的四邊形能否構(gòu)成平行四邊形?若能,求出點F的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種牛奶,進(jìn)價為每箱24元,規(guī)定售價不低于進(jìn)價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,已知△ABC三個頂點的坐標(biāo)分別為A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)畫出△ABC關(guān)于x軸對稱的△ADE(其中點B,C的對稱點分別為點D、E);
(2)畫出△ABC關(guān)于原點成中心對稱的△FGH(其中A、B、C的對稱點分別為點F,G,H).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖冢埱蟪M點的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標(biāo);
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
科目: 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com