科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:
①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;
②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;
③作AP射線,交邊CD于點Q.
若QC=1,BC=3,則平行四邊形ABCD周長為_____
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+bx+c(a≠0)的頂點為M(1,9),經過拋物線上的兩點A(﹣3,﹣7)和B(3,m)的直線交拋物線的對稱軸于點C.
(1)求拋物線的解析式及點B的坐標.
(2)在拋物線上A,M兩點之間的部分(不包含A,M兩點),是否存在點D,使得S△DAC=2S△DCM?若存在,求出點D的坐標;若不存在,請說明理由.
(3)上下平移直線AB,設平移后的直線與拋物線交與A′,B′兩點(A′在左邊,B'在右邊),且與y軸交與點P(0,n),若∠A′MB′=90°,求n的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,點E在△ABC內,且∠CAE+∠CBE=90°
(1)如圖1,當△ABC和△EFC均為等腰直角三角形時,連接BF,
①求證:△CAE∽△CBF;
②若BE=2,AE=4,求EF的長;
(2)如圖2,當△ABC和△EFC均為一般直角三角形時,若=k,BE=1,AE=3,CE=4,求k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為建設天府新區(qū)“公園城市”,實現(xiàn)城市生活垃圾減量化、資源化、無害化的目標.近日,成都市天府新區(qū)計劃在各社區(qū)試點實施生活垃圾分類處理活動,取得市民積極響應.某創(chuàng)業(yè)公司發(fā)現(xiàn)這一商機,研發(fā)生產了一種新型家庭垃圾分類桶,并投入市場試營銷售.已知該新型垃圾桶成本為每個40元,市場調查發(fā)現(xiàn),該垃圾桶每件售價y(元)與每天的銷售量為x(個)的關系如圖.為推廣新產品及考慮每件利潤因素,公司計劃每天的銷售量不低于1000件且不高于2000件.
(1)求每件銷售單價y(元)與每天的銷售量為x(個)的函數(shù)關系式;
(2)設該公司日銷售利潤為W(元),求每天的最大銷售利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是A邊上一點,且AE=,點F是邊BC上的任意一點,把△BEF沿EF翻折,點B的對應點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A在雙曲線y=(k≠0)的第一象限的分支上,AB垂直y軸于點B,點C在x軸正半軸上,OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,連接CD,若△CDE的面積為1,則k的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線C1:y=ax2+bx﹣1經過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達式;
(2)直接用含t的代數(shù)式表達線段MN的長;
(3)當△AMN是以MN為直角邊的等腰直角三角形時,求t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題情境:如圖①,P是⊙O外的一點,直線PO分別交⊙O于點A、B,可以發(fā)現(xiàn)PA是點P到⊙O上的點的最短距離.
(1)直接運用:如圖②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是弧CD上的一個動點,連接AP,則AP的最小值是 .
(2)構造運用:如圖③,在邊長為8的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,請求出A′C長度的最小值.
(3)綜合運用:如圖④,平面直角坐標系中,分別以點A(﹣2,3),B(3,4)為圓心,分別以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動點,P為x軸上的動點,則PM+PN的最小值等于 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,E點是正方形ABCD的邊BC上一點,AB=12,BE=5,△ABE逆時針旋轉后能夠與△ADF重合.
(1)旋轉中心是 ,旋轉角為 度;
(2)△AEF是 三角形;
(3)求EF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC于點D,交BC于點E,連接ED.
(1)求證:ED=EC;
(2)填空:
①設CD的中點為P,連接EP,則EP與⊙O的位置關系是 ;
②連接OD,當∠B的度數(shù)為 時,四邊OBED是菱形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com