【題目】已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,點E在△ABC內(nèi),且∠CAE+∠CBE=90°
(1)如圖1,當△ABC和△EFC均為等腰直角三角形時,連接BF,
①求證:△CAE∽△CBF;
②若BE=2,AE=4,求EF的長;
(2)如圖2,當△ABC和△EFC均為一般直角三角形時,若=k,BE=1,AE=3,CE=4,求k的值.
【答案】(1)①見解析;②2;(2)
【解析】
(1)①先判斷出∠BCF=∠ACE,再判斷出,即可得出結論;
②先判斷出∠CBF=∠CAE,進而判斷出∠EBF=90°,再求出BF=2,最后用勾股定理求解即可得出結論;
(2)先判斷出∠BCF=∠ACE,再判斷出,進而判斷出△BCF∽△ACE,進而表示出BF=,再表示出EF=,最后用勾股定理得,BE2+BF2=EF2,建立方程求解即可得出結論.
解:(1)①∵△ABC和△CEF都是等腰直角三角形,
∴∠ECF=∠ACB=45°,
∴∠BCF=∠ACE,
∵△ABC和△CEF都是等腰直角三角形,
∴CE=CF,AC=CB,
∴=,
∴,
∴△BCF∽△ACE;
②由①知,△BCF∽△ACE,
∴∠CBF=∠CAE,=,
∴BF=AE=×4=,
∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
即:∠EBF=90°,
根據(jù)勾股定理得,EF=;
(2)如圖(2),連接BF,
在Rt△ABC中,tan∠ACB==k,
同理,tan∠ECF=k,
∴tan∠ACB=tan∠ECF,
∴∠ACB=∠ECF,
∴∠BCF=∠ACE,
在Rt△ABC中,設BC=m,則AB=km,
根據(jù)勾股定理得,AC=;
在Rt△CEF中,設CF=n,則EF=nk,同理,CE=,
∴,,
∴,
∵∠BCF=∠ACE,
∴△BCF∽△ACE,
∴∠CBF=∠CAE,
∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
即:∠EBF=90°,
∵△BCF∽△ACE,
∴
∴BF=AE=
∵CE=4,
∴,
∴n=,
∴EF=,
在Rt△EBF中,根據(jù)勾股定理得,BE2+BF2=EF2,
∴12+()2=()2,
∴k=或k=(舍),
即:k的值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABCD中,∠ABC=60°,AB=4,BC=m,E為BC邊上的動點,連結AE,作點B關于直線AE的對稱點F.
(1)若m=6,①當點F恰好落在∠BCD的平分線上時,求BE的長;
②當E、C重合時,求點F到直線BC的距離;
(2)當點F到直線BC的距離d滿足條件:2﹣2≤d≤2+4,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1000名學生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線C→D→A運動,速度為2cm/s.當一個點到達終點時,另一個點隨之停止運動。設點P運動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數(shù)關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖①,P是⊙O外的一點,直線PO分別交⊙O于點A、B,可以發(fā)現(xiàn)PA是點P到⊙O上的點的最短距離.
(1)直接運用:如圖②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是弧CD上的一個動點,連接AP,則AP的最小值是 .
(2)構造運用:如圖③,在邊長為8的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,請求出A′C長度的最小值.
(3)綜合運用:如圖④,平面直角坐標系中,分別以點A(﹣2,3),B(3,4)為圓心,分別以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動點,P為x軸上的動點,則PM+PN的最小值等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,過點A作直線MN,且∠MAC=∠ABC.
(1)求證:MN是⊙O的切線.
(2)設D是弧AC的中點,連結BD交AC于點G,過點D作DE⊥AB于點E,交AC于點F.
①求證:FD=FG.
②若BC=3,AB=5,試求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為倡導“低碳生活”,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2
圖1 圖2
(1)求車座點E到地面的距離;(結果精確到1cm)
(2)求車把點D到車架檔直線AB的距離.(結果精確到1cm).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中“課前預習不達標”對應的圓心角度數(shù)是 ;
(3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行“一幫一”互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點 A 和點 C 分別在x 軸和 y 軸的正半軸上,OA=6,OC=4,以 OA,OC 為鄰邊作矩形 OABC, 動點 M,N 以每秒 1 個單位長度的速度分別從點 A、C 同時出發(fā),其中點 M 沿 AO 向終點 O 運動,點 N沿 CB 向終點 B 運動,當兩個動點運動了 t 秒時,過點 N 作NP⊥BC,交 OB 于點 P,連接 MP.
(1)直接寫出點 B 的坐標為 ,直線 OB 的函數(shù)表達式為 ;
(2)記△OMP 的面積為 S,求 S 與 t 的函數(shù)關系式;并求 t 為何值時,S有最大值,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com