【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運(yùn)動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線C→D→A運(yùn)動,速度為2cm/s.當(dāng)一個點到達(dá)終點時,另一個點隨之停止運(yùn)動。設(shè)點P運(yùn)動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式;
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于點A(4,0),與y軸交于點B(0,4),在x軸上有一動點D9(m,0)(0<m<4),過點D作x軸的垂線交直線AB于點C,交拋物線于點E,
(1)直接寫出拋物線和直線AB的函數(shù)表達(dá)式.
(2)當(dāng)點C是DE的中點時,求出m的值,并判定四邊形ODEB的形狀(不要求證明).
(3)在(2)的條件下,將線段OD繞點O逆時針旋轉(zhuǎn)得到OD′,旋轉(zhuǎn)角為α(0°<a<90°),連接D′A、D′B,求D′A+D′B的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣3x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c與直線y=c分別交y軸的正半軸于點C和第一象限的點P,連接PB,得△PCB≌△BOA(O為坐標(biāo)原點).若拋物線與x軸正半軸交點為點F,設(shè)M是點C,F(xiàn)間拋物線上的一點(包括端點),其橫坐標(biāo)為m.
(1)直接寫出點P的坐標(biāo)和拋物線的解析式;
(2)當(dāng)m為何值時,△MAB面積S取得最小值和最大值?請說明理由;
(3)求滿足∠MPO=∠POA的點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=﹣bx,其中a、b、c,滿足a>b>c,a+b+c=0.
(1)求證:這兩個函數(shù)的圖象交于不同的兩點;
(2)設(shè)這兩個函數(shù)的圖象交于A,B兩點,作AA1⊥x軸于A1,BB1⊥x軸于B1,求線段A1B1的長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC于點D,交BC于點E,連接ED.
(1)求證:ED=EC;
(2)填空:
①設(shè)CD的中點為P,連接EP,則EP與⊙O的位置關(guān)系是 ;
②連接OD,當(dāng)∠B的度數(shù)為 時,四邊OBED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,點E在△ABC內(nèi),且∠CAE+∠CBE=90°
(1)如圖1,當(dāng)△ABC和△EFC均為等腰直角三角形時,連接BF,
①求證:△CAE∽△CBF;
②若BE=2,AE=4,求EF的長;
(2)如圖2,當(dāng)△ABC和△EFC均為一般直角三角形時,若=k,BE=1,AE=3,CE=4,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的分式方程=4的解為正數(shù),且使關(guān)于y,不等式組的解集為y<-2,則符合條件的所有整數(shù)a的和為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解,求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗,各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想“轉(zhuǎn)化”,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.
例如:解方程
解:移項,得
兩邊平方,得
即
兩邊再平方,得
即
解這個方程得:
檢驗:當(dāng)時,原方程左邊,右邊
不是原方程的根;
當(dāng)時,原方程左邊,右邊
原方程的根
原方程的根是.
(1)請仿照上述解法,求出方程的解;
(2)如圖已知矩形草坪的長,寬,小華把一根長為的繩子的一端固定在點,從草坪邊沿走到點處,把長繩段拉直并固定在點,然后沿草坪邊沿走到點處,把長繩剩下的一段拉直,長繩的另一端恰好落在點,則 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com