精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面

(Ⅰ)求證:平面平面;

(Ⅱ)若,二面角,求的值.

【答案】(Ⅰ)見解析(Ⅱ)

【解析】

(Ⅰ)取的中點,可得,由平面平面平面,所以,從而得平面,可得、為平行四邊形,所以,所以平面,再得到平面平面;

(Ⅱ)以為原點,建立空間直角坐標系,設,求出平面和平面的法向量,再利用向量的夾角公式,得到關于的方程,求出的值,從而得到的值.

(Ⅰ)取的中點,連接,

,∴

是正方形,∴

又平面平面,平面平面平面,

平面

又∵平面,∴

平面,

平面

,且

∴四邊形為平行四邊形,

∴四邊形為平行四邊形,∴

平面,

平面,∴平面平面

(Ⅱ)由(Ⅰ)得,以為原點,,所在的直線分別為,軸建立空間直角坐標系,

,

,∴,

,,

易知平面的一個法向量為

為平面的法向量,由

,得

,解得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,分別是其左、右焦點,且過點.

(1)求橢圓的標準方程;

(2)若在直線上任取一點,從點的外接圓引一條切線,切點為.問是否存在點,恒有?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,直線l的極坐標方程為ρcosθ=4,曲線C的極坐標方程為ρ=2cosθ+2sinθ,以極點為坐標原點O,極軸為x軸的正半軸建立直角坐標系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點.

Ⅰ)寫出直線l的直角坐標方程以及曲線C的參數方程;

Ⅱ)若射線l與直線l交于點N,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《高中數學課程標準》(2017版)規(guī)定了數學直觀想象學科的六大核心素養(yǎng),為了比較甲、乙兩名高二學生的數學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達圖,又可稱為戴布拉圖、蜘蛛網圖,可用于對研究對象的多維分析)(

A.甲的直觀想象素養(yǎng)高于乙

B.甲的數學建模素養(yǎng)優(yōu)于數據分析素養(yǎng)

C.乙的數學建模素養(yǎng)與數學運算素養(yǎng)一樣

D.乙的六大素養(yǎng)整體水平低于甲

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線E的參數方程為為參數),以O為極點,x軸非負半軸為極軸建立極坐標系,直線,的極坐標方程分別為,交曲線E于點AB,交曲線E于點CD.

1)求曲線E的普通方程及極坐標方程;

2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】BMI指數(身體質量指數,英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標準,BMI=體重(kg/身高(m)的平方.根據中國肥胖問題工作組標準,當BMI28時為肥胖.某地區(qū)隨機調查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調查者的頻率分布直方圖如下:

1)求被調查者中肥胖人群的BMI平均值

2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認為35歲以上成人患高血壓與肥胖有關.

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合計

高血壓

非高血壓

合計

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)對任意,都有恒成立,求實數a的取值范圍;

(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市實施了機動車尾號限行,該市報社調查組為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:

年齡(歲)

[1525)

[25,35)

[3545)

[45,55)

[5565)

[65,75]

頻數

5

10

15

10

5

5

贊成人數

4

6

9

6

3

4

(Ⅰ)請估計該市公眾對“車輛限行”的贊成率和被調查者的年齡平均值;

)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行追蹤調查,記被選4人中不贊成“車輛限行”的人數為,求隨機變量的分布列和數學期望;

若在這50名被調查者中隨機發(fā)出20份的調查問卷,記為所發(fā)到的20人中贊成“車輛限行”的人數,求使概率取得最大值的整數.

查看答案和解析>>

同步練習冊答案