8.${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$=$\frac{807}{8}$.

分析 利用有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則求解.

解答 解:${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$
=($\frac{25}{9}$)${\;}^{\frac{1}{2}}$+(10-1-2+[($\frac{4}{3}$)3]${\;}^{-\frac{2}{3}}$-1+$\frac{37}{48}$
=$\frac{5}{3}+100$-$\frac{9}{16}$-1+$\frac{37}{48}$
=$\frac{807}{8}$.
故答案為:$\frac{807}{8}$.

點(diǎn)評 本題考查有理數(shù)指數(shù)冪化簡求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,在△ABC中,AD⊥BC于D,下列條件:
(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)$\frac{CD}{AD}$=$\frac{AC}{AB}$;
(4)AB2=BD•BC.
其中一定能夠判定△ABC是直角三角形的共有( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,若b=3,c=4,且△ABC的面積為3$\sqrt{3}$,則a=$\sqrt{13}$或$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$且目標(biāo)函數(shù)z=x-y的最小值為-1,則m=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)向量$\overrightarrow a=({sinx,sinx}),\overrightarrow b=({\sqrt{3}cosx,sinx})$,
(Ⅰ)設(shè)函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$,求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,銳角A滿足$f(A)=\frac{3}{2}$,$b+c=4,a=\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.參數(shù)方程$\left\{\begin{array}{l}{x=3t+2}\\{y=t-1}\end{array}\right.$(t為參數(shù))的普通方程為x-3y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=ax3+bx2+cx+d(a≠0)在(-∞,+∞)上是減少的,則下列各式中成立的是( 。
A.a>0,b2+3ac≥0B.a>0,b2-3ac≤0C.a<0,b2+3ac≥0D.a<0,b2-3ac≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a,b∈R,i是虛數(shù)單位,若a+i=2-bi,則(a+bi)2=( 。
A.3-4iB.3+4iC.4-3iD.4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,周期為π的奇函數(shù)是( 。
A.y=sin2xB.y=tan2xC.y=sin2x+cos2xD.y=sinxcosx

查看答案和解析>>

同步練習(xí)冊答案