7.已知$\overrightarrow{m}$,$\overrightarrow{n}$是兩個非零向量,且|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,則|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|的最大值為(  )
A.$\frac{8\sqrt{3}}{3}$B.3$\sqrt{3}$C.$\frac{7\sqrt{3}}{2}$D.4$\sqrt{2}$

分析 由|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,得${\overrightarrow{n}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=0,得出|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|關(guān)于|$\overrightarrow{n}$|的函數(shù),求出此函數(shù)的最值即可.

解答 解:∵|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,
∴($\overrightarrow{m}+2\overrightarrow{n}$)2=4${\overrightarrow{n}}^{2}$+4$\overrightarrow{m}•\overrightarrow{n}$+4=4,
∴${\overrightarrow{n}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=0,
∴(2$\overrightarrow{m}$+$\overrightarrow{n}$)2=4${\overrightarrow{m}}^{2}$+4$\overrightarrow{m}•\overrightarrow{n}$+${\overrightarrow{n}}^{2}$=16+3$\overrightarrow{m}•\overrightarrow{n}$=16-3${\overrightarrow{n}}^{2}$,
∴|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|=$\sqrt{16-3|\overrightarrow{n}{|}^{2}}$+|$\overrightarrow{n}$|,
令|$\overrightarrow{n}$|=x(0<x≤$\frac{4}{\sqrt{3}}$),f(x)=$\sqrt{16-3{x}^{2}}$+x,
則f′(x)=$\frac{-6x}{2\sqrt{16-3{x}^{2}}}$+1,令f′(x)=0得x=$\frac{2}{\sqrt{3}}$,
∴當(dāng)0$<x<\frac{2}{\sqrt{3}}$時,f′(x)>0,當(dāng)$\frac{2}{\sqrt{3}}<x<\frac{4}{\sqrt{3}}$時,f′(x)<0,
∴當(dāng)x=$\frac{2}{\sqrt{3}}$時,f(x)取得最大值f($\frac{2}{\sqrt{3}}$)=$\frac{8\sqrt{3}}{3}$.
故選A.

點評 本題考查了向量的模的求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究函數(shù)的極值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下面的語句:最后輸出的結(jié)果是(  )
A.1+2+3+…+100B.12+22+32+…+1002C.1+3+5+…+99D.12+32+52+…+992

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某種彩票的投注號碼由7位數(shù)字組成,每位數(shù)字均為0~9這10個數(shù)碼中的任意1個.由搖號得出1個7位數(shù)(首位可為0)為中獎號,若某張彩票的7位數(shù)與中獎號相同即得一等獎,若有6位相連數(shù)字與中獎號的相應(yīng)數(shù)位上的數(shù)字相同即得二等獎,若有5位相連數(shù)字與中獎號的相應(yīng)數(shù)位上的數(shù)字相同即得三等獎,各獎不可兼得.某人買了1張彩票且假設(shè)這期彩票中獎號碼為1234567.
(1)求其獲得二等獎的概率;
(2)求其獲得三等獎及以上獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線過點P(2,1).
(1)若直線與3x-2y+4=0平行,求直線的方程.
(2)若直線與3x-2y+4=0垂直,求直線的方程.
(3)若直線在兩坐標(biāo)軸上的截距相等,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:?x∈R,kx2+1≤0,命題q:?x∈R,x2+2kx+1>0.
(1)當(dāng)k=3時,寫出命題p的否定,并判斷真假;
(2)當(dāng)p∨q為假命題時,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知tanα=3,則2sin2α-sinαcosα+cos2α的值等于( 。
A.$\frac{8}{9}$B.$\frac{7}{5}$C.$\frac{2}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)樣本數(shù)據(jù)x1,x2,…,x2017標(biāo)準(zhǔn)差為4,若yi=2xi-1(i=1,2,3,…,2017),則數(shù)據(jù)y1,y2,…,y2017的標(biāo)準(zhǔn)差為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{-{x}^{2}+2x,x≥0}\end{array}\right.$,則f(2)=0.若f(f(x))≥9,則實數(shù)x的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.點P是曲線C1:(x-2)2+y2=4上的動點,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡方程為曲線C2
(1)求曲線C1,C2的極坐標(biāo)方程;
(2)射線θ=$\frac{π}{3}({ρ>0})$與曲線C1,C2分別交于A,B兩點,定點M(2,0),求△MAB的面積.

查看答案和解析>>

同步練習(xí)冊答案