9.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),則a1000=-1.

分析 a1=1,a2=5,an+2=an+1-an(n∈N*),可得:an+6=an.即可得出.

解答 解:∵a1=1,a2=5,an+2=an+1-an(n∈N*),
∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1.
∴an+6=an
則a1000=a6×166+4=a4=-1.
故答案為:-1.

點評 本題考查了數(shù)列的通項公式、遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐A-BDEC中,AD⊥平面BDEC,底面BDEC為直角梯形,∠BDE=90°,BC∥DE,AD=DB=$\frac{\sqrt{2}}{2}$,BC=2DE=1,
(Ⅰ)求證:面ADC⊥面ABE;
(Ⅱ)求點E到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1+z}{1-z}$=i,則z2016=( 。
A.-2iB.2iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項和為Sn,已知a4+a6=-6,則S9=(  )
A.-27B.27C.-54D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義在R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點,那么不等式-1≤f(x+1)≤1的解集是( 。
A.[-1,2]B.(-∞,-1)∪(2,+∞)C.(-1,2)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,C=90°,CB=3,點M是AB上的動點(包含端點),則$\overrightarrow{MC}$•$\overrightarrow{CB}$的取值范圍為[-9,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.以F1(-2,0),F(xiàn)2(2,0)為焦點的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點A(2,3).
(1)求橢圓C的方程;
(2)過原點的直線l交橢圓C于M、N兩點,P為橢圓C上的點,且與M、N不關(guān)于坐標(biāo)軸對稱,設(shè)直線MP、NP的斜率分別為k1,k2,試問:k1,k2的乘積是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x,x∈R.
(1)將函數(shù)化為f(x)=Asin(ωx+ϕ)+b形式.
(2)求函數(shù)的最大值,并求此時x的相應(yīng)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x+$\frac{a}{x}$+lnx(a∈R).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的函數(shù)g(x)=$\frac{lnx}{{x}^{2}}$-f(x)+lnx+2e(e為自然對數(shù)的底數(shù))有且只有一個零點,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案