6.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+4x,x≤2\\{log_2}x-a,x>2\end{array}\right.$有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.[-1,0)B.(1,2]C.(1,+∞)D.(2,+∞)

分析 由分段函數(shù),分別判斷x>2時,x≤2時,f(x)的單調(diào)性,可得恰有一個零點,由對數(shù)函數(shù)的單調(diào)性,即可得到a的范圍.

解答 解:由函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+4x,x≤2\\{log_2}x-a,x>2\end{array}\right.$,
可得x>2時,f(x)=log2x-a遞增,f(x)最多一個零點;
x≤2時,f(x)=-x2+4x=-(x-2)2+4,為增函數(shù),f(x)最多一個零點.
當x>2時,f(x)=0,即有a=log2x,由x>2,可得a>1.
當x≤2時,f(x)=0,可得x=0或4(舍去),
則實數(shù)a的取值范圍是(1,+∞).
故選:C.

點評 本題考查分段函數(shù)的零點問題解法,注意運用定義法和函數(shù)的單調(diào)性,考查方程思想,運算求解能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點,E的離心率為$\frac{\sqrt{2}}{2}$,點(0,1)是E上一點.
(1)求橢圓E的方程;
(2)過點F1的直線交橢圓E于A,B兩點,且$\overrightarrow{B{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,求直線BF2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(0<ω≤2),直線x=$\frac{π}{4}$為y=f(x)圖象的一條對稱軸.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(A)=1且a=2,求△ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.運行如圖所示的算法框圖,輸出的結(jié)果是( 。
A.-1B.0C.$\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在x=1處的切線方程是y=2x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.(1+x)6(1+y)4的展開式中,記xmyn項的系數(shù)為f(m,n),則f(3,0)+f(0,3)=( 。
A.9B.16C.18D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)拋物線的頂點在原點,其焦點在x軸上,又拋物線上的點A(-1,a)與焦點F的距離為2,則a=( 。
A.4B.4或-4C.-2D.-2或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若某多面體的三視圖如圖所示(單位:cm),則此多面體的體積是$\frac{5}{6}$cm3

查看答案和解析>>

同步練習冊答案