7.已知直線l之方程為$\sqrt{3}$x+y+1=0,則直線的傾斜角為( 。
A.120°B.150°C.60°D.30°

分析 設(shè)直線的傾斜角為α,可得tanα=-$\sqrt{3}$,即可得出.

解答 解:設(shè)直線的傾斜角為α,則tanα=-$\sqrt{3}$,
∴α=120°
故選:A.

點(diǎn)評(píng) 本題考查了直線的傾斜角與斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+cosx+$\frac{5}{8}$a-$\frac{3}{2}$在閉區(qū)間[0,$\frac{π}{2}}$]上的最小值是2,求對(duì)應(yīng)的a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+$\frac{2}{x}$(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)y=f(x)在定義域內(nèi)存在兩個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若二次函數(shù)的圖象被x軸所截得的線段的長(zhǎng)為2,且其頂點(diǎn)坐標(biāo)為(-1,-1),則此二次函數(shù)的解析式是y=x2+2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù):
x33.54.5m
y234n
根據(jù)上表提供的數(shù)據(jù),已知m+n=9求出y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=x-0.75,則n的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四面 體ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,M是AD的中點(diǎn),P是BM的中點(diǎn),點(diǎn)Q在線段AC 上,且AQ=3QC.
(1)求證:PQ⊥AD;
(2)若∠BDC=45°,求直線CD與平面ACB所成角的大;
(3)若CD=1,則在線段BD上是否存在點(diǎn)E,使得平面CPE⊥平面CMB?若存在,求出點(diǎn)E的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,右頂點(diǎn)A是拋物線y2=8x的焦點(diǎn).過D(1,0)直線l與橢圓C相交于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{AQ}$,且點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等比數(shù)列{an}為遞增數(shù)列,且$a_5^2={a_{10}}$,$2({a_n}+{a_{n+2}})=5{a_{n+1}},n∈{N^*}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令${b_n}={(-1)^n}({a_n}+1)$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案