12.如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù):
x33.54.5m
y234n
根據(jù)上表提供的數(shù)據(jù),已知m+n=9求出y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=x-0.75,則n的值為4.

分析 求出樣本中心坐標(biāo),代入回歸直線方程求解即可.

解答 解:由題意可知$\overline{x}$=$\frac{11+m}{4}$,$\overline{y}$=$\frac{9+n}{4}$,
因為回歸直線方程,經(jīng)過樣本中心,
所以$\frac{9+n}{4}$=$\frac{11+m}{4}$-0.75,即m-n=1,
因為m+n=9,解得m=5,n=4,
故答案為:4.

點評 本題考查回歸直線方程的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a<0,則a的平方根是$±\sqrt{-a}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{\sqrt{x+2}}{2x-1}$的定義域為{x|x≥-2且x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=|x|的圖象( 。
A.關(guān)于原點對稱B.關(guān)于直線y=x對稱C.關(guān)于x軸對稱D.關(guān)于y軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l之方程為$\sqrt{3}$x+y+1=0,則直線的傾斜角為( 。
A.120°B.150°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,ABCD-A1B1C1D1是棱長為a的正方體,有下列說法:
①若點P在△BDC1所在平面上運動,則三棱錐P-AB1D1的體積為定值;
②直線 A1C與平面BDC1的交點為△BDC1的外心;
③若點M、N、L分別是棱A1B1,A1D1,A1A上與端點不重合的三個動點,則△MNL必為銳角三角形;
④若點Q為的中點,點G為正方形ABCD-A1B1C1D1(包含邊界)內(nèi)的一個動點,且始終滿足GQ⊥A1C,則動點G的軌跡是以A1為圓心,$\frac{{\sqrt{2}}}{3}$a為半徑的一段圓。
其中正確說法有①②③(寫出所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若不等式x2-2ax+a>0,對x∈R恒成立,則關(guān)于t的不等式a2t+1<a${\;}^{{t^2}+2t-3}}$<1的解為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某班幾位同學(xué)組成研究性學(xué)習(xí)小組,對[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次日常生活中是否具有環(huán)保意識的調(diào)查.若生活習(xí)慣具有環(huán)保意識的稱為“環(huán)保族”,否則稱為“非環(huán)保族”.
得到如下統(tǒng)計表:
組數(shù)分組環(huán)保族人群占本組的頻率本組占樣本的頻率
第一組[25,30)1200.60.2
第二組[30,35)1950.65q
第三組[35,40)1000.50.2
第四組[40,45)a0.40.15
第五組[45,50)300.30.1
第六組[50,55]150.30.05
(1)求q、n、a的值.
(2)從年齡段在[40,55]的“環(huán)保族”中采用分層抽樣法抽取7人參加戶外環(huán);顒,其中選取2人作為領(lǐng)隊,求選取的2名領(lǐng)隊中恰有1人年齡在[45,50)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b,c都是正整數(shù),a+b+c=6,則a=1的概率為(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{2}{7}$

查看答案和解析>>

同步練習(xí)冊答案