【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。
(2)能否在犯錯(cuò)誤的概率不超過百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)14%;(2)在犯錯(cuò)誤的概率不超過百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān).
【解析】
(1)由頻率估計(jì)概率,求出需要志愿者提供幫助的老人頻率即可;
(2)將數(shù)據(jù)代入公式,求出,與6.635作比較,若大于6.635則可以.
(1)調(diào)查的500名老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例的估計(jì)值為%=14%
(2),由于9.967>6.635,所以可以在犯錯(cuò)誤的概率不超過百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假,因?yàn)?/span>“新冠”疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上學(xué)習(xí),為了研究學(xué)生網(wǎng)上學(xué)習(xí)的情況,某學(xué)校隨機(jī)抽取名學(xué)生對線上教學(xué)進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學(xué)生中男生有人對線上教學(xué)滿意,女生中有名表示對線上教學(xué)不滿意.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對線上教學(xué)是否滿意 與性別有關(guān)”;
態(tài)度 性別 | 滿意 | 不滿意 | 合計(jì) |
男生 | |||
女生 | |||
合計(jì) | 100 |
(2)從被調(diào)查的對線上教學(xué)滿意的學(xué)生中,利用分層抽樣抽取名學(xué)生,再在這名學(xué)生中抽取名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“黃梅時(shí)節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”江南梅雨的點(diǎn)點(diǎn)滴滴都流潤著濃洌的詩情每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南Q鎮(zhèn)年梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問題:
Ⅰ“梅實(shí)初黃暮雨深”假設(shè)每年的梅雨天氣相互獨(dú)立,求Q鎮(zhèn)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率;
Ⅱ“江南梅雨無限愁”在Q鎮(zhèn)承包了20畝土地種植楊梅的老李也在犯愁,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計(jì)表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李排解憂愁,他來年應(yīng)該種植哪個(gè)品種的楊梅可以使總利潤萬元的期望更大?需說明理由
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程.
(3)如果廣告費(fèi)支出為一千萬元,預(yù)測銷售額大約為多少百萬元?
參考公式用最小二乘法求線性回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的取值;
(2)設(shè),若,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出與的函數(shù)關(guān)系式;
(2)按這100天統(tǒng)計(jì)的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)的動(dòng)點(diǎn)P到直線的距離與到點(diǎn)的距離比為.
(1)求動(dòng)點(diǎn)P所在曲線E的方程;
(2)設(shè)點(diǎn)Q為曲線E與軸正半軸的交點(diǎn),過坐標(biāo)原點(diǎn)O作直線,與曲線E相交于異于點(diǎn)的不同兩點(diǎn),點(diǎn)C滿足,直線和分別與以C為圓心,為半徑的圓相交于點(diǎn)A和點(diǎn)B,求△QAC與△QBC的面積之比的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com