【題目】橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于兩點(diǎn),在第一象限,軸,垂足為,連接延長(zhǎng)交橢圓于點(diǎn).

①求證:;

②求面積最大值.

【答案】12)①證明見(jiàn)解析②

【解析】

1)結(jié)合離心率,以及,計(jì)算即得解;

2)設(shè)直線方程為,與橢圓聯(lián)立,可求得P,Q坐標(biāo),于是直線的斜率為,方程為,聯(lián)立求得G點(diǎn)坐標(biāo),利用數(shù)量積運(yùn)算即得證;表示的面積,利用均值不等式,即得解.

1)由的焦點(diǎn)為,橢圓離心率

,

橢圓方程為

1設(shè)直線的斜率為,則其方程為

,得

,則

于是直線的斜率為,方程為

,得

設(shè),則是方程的解,故,由此得

從而直線的斜率為所以得證.

所以的面積

設(shè),則由,當(dāng)且僅當(dāng)時(shí)取等號(hào)

因?yàn)?/span>單調(diào)遞減,所以當(dāng),即時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面平面,.

(1)求證:平面平面;

(2)若與平面所成的線面角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,, ,, PA=AB=BC=2. EPC的中點(diǎn).

1)證明:

2)求三棱錐P-ABC的體積;

3 證明:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線交于PQ兩點(diǎn),且的面積為16O為坐標(biāo)原點(diǎn)).

1)求C的方程.

2)直線l經(jīng)過(guò)C的焦點(diǎn)Fl不與x軸垂直;lC交于A,B兩點(diǎn),若線段AB的垂直平分線與x軸交于點(diǎn)D,試問(wèn)在x軸上是否存在點(diǎn)E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值點(diǎn);

(Ⅱ)若直線過(guò)點(diǎn),并且與曲線相切,求直線的方程;

(Ⅲ)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查了解某高等院校畢業(yè)生參加工作后,從事對(duì)工作與大學(xué)所學(xué)專業(yè)是否專業(yè)對(duì)口,該校隨機(jī)調(diào)查了80位該校2015年畢業(yè)的大學(xué)生,得到具體數(shù)據(jù)如下表:

(1)能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對(duì)口與性別有關(guān)?”

參考公式:

附表:

(2)求這80位畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對(duì)口的概率,并估計(jì)該校近3年畢業(yè)的2000名大學(xué)生總從事的工作與大學(xué)所學(xué)專業(yè)對(duì)口的人數(shù);

(3)若從工作與所學(xué)專業(yè)不對(duì)口的15人中選出男生甲、乙,女生對(duì)丙、丁,讓他們兩兩進(jìn)行一次10分鐘的職業(yè)交流,該校宣傳部對(duì)每次交流都一一進(jìn)行視頻記錄,然后隨機(jī)選取一次交流視頻上傳到學(xué)校的網(wǎng)站,試求選取的視頻恰為異性交流視頻的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為, ,過(guò)點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C)的左、右焦點(diǎn)分別是,離心率為,過(guò)且垂直于軸的直線被橢圓C截得的線段長(zhǎng)為3

1)求橢圓C的方程;

2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接、,設(shè)的角平分線PMC的長(zhǎng)軸于點(diǎn),求m的取值范圍;

3)在(2)的條件下,過(guò)點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn)設(shè)直線、的斜率分別為、,若,試證明為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)都在圓上.

1)求圓的方程;

2)直線交圓、兩點(diǎn),且,求

查看答案和解析>>

同步練習(xí)冊(cè)答案