1.已知數(shù)列{an}滿足a2=2,2an+1=an,則數(shù)列{an}的前6項(xiàng)和S6等于( 。
A.$\frac{63}{16}$B.$\frac{63}{12}$C.$\frac{63}{8}$D.$\frac{63}{4}$

分析 推導(dǎo)出數(shù)列{an}是首項(xiàng)為4,公比為$\frac{1}{2}$的等比數(shù)列,由此能求出S6

解答 解:∵數(shù)列{an}滿足a2=2,2an+1=an,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$,∴${a}_{1}=\frac{{a}_{2}}{\frac{1}{2}}$=4,
∴數(shù)列{an}是首項(xiàng)為4,公比為$\frac{1}{2}$的等比數(shù)列,
∴S6=$\frac{{a}_{1}[1-(\frac{1}{2})^{6}]}{1-\frac{1}{2}}$=$\frac{4(1-\frac{1}{64})}{\frac{1}{2}}$=$\frac{63}{8}$.
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的前6項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.實(shí)數(shù)x,y滿足不等式組:$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,若z=x2+y2,則z的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.《左傳•僖公十四年》有記載:“皮之不存,毛將焉附?”這句話的意思是說皮都沒有了,毛往哪里依附呢?比喻事物失去了借以生存的基礎(chǔ),就不能存在.皮之不存,毛將焉附?則“有毛”是“有皮”的( 。l件.
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有6個(gè)人排成一排照相,要求甲、乙、丙三人站在一起,則不同的排法種數(shù)為( 。
A.24B.72C.144D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點(diǎn)P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$右支上的一點(diǎn),其左、右焦點(diǎn)分別為F1,F(xiàn)2,若△PF1F2的內(nèi)切圓I與x軸相切于點(diǎn)A,過F2作PI的垂線,重足為B,O為坐標(biāo)原點(diǎn),那么$\frac{{|{OA}|}}{{|{OB}|}}$的值為(  )
A.1B.$\sqrt{2}$C.$\frac{a}$D.$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{a_{n+1}}$(n≥1,n∈Z)
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{n2an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)下列條件解三角形:
(1)A=30°,B=105°,c=$\sqrt{2}$;
(2)a=14,b=7$\sqrt{6}$,B=60°;
(3)b=47,c=38,C=110°;
(4)b=25,c=12,C=23°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\left\{\begin{array}{l}x+y-1≥0\\ x+2y-4≤0\\ x-y-1≤0\end{array}\right.$,則$\frac{y+1}{x+3}$的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,若$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=-12$,則$\frac{{{x_1}+{y_1}}}{{{x_2}+{y_2}}}$=-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案