12.《左傳•僖公十四年》有記載:“皮之不存,毛將焉附?”這句話的意思是說皮都沒有了,毛往哪里依附呢?比喻事物失去了借以生存的基礎(chǔ),就不能存在.皮之不存,毛將焉附?則“有毛”是“有皮”的( 。l件.
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:由題意知“無皮”⇒“無毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分條件.
故選:A

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,利用充分條件和必要條件的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=3sin(2x+π)是(  )
A.周期為2π的奇函數(shù)B.周期為2π的偶函數(shù)
C.周期為π的奇函數(shù)D.周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知甲,乙兩輛車去同一貨場裝貨物,貨場每次只能給一輛車裝貨物,所以若兩輛車同時(shí)到達(dá),則需要有一車等待.已知甲、乙兩車裝貨物需要的時(shí)間都為30分鐘,倘若甲、乙兩車都在某1小時(shí)內(nèi)到達(dá)該貨場,則至少有一輛車需要等待裝貨物的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓x2+y2-4x-6y+9=0與直線y=kx+3相交于A,B兩點(diǎn),若$|{AB}|≥2\sqrt{3}$,則k的取值范圍是( 。
A.[-$\frac{3}{4}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[-$\sqrt{3}$,$\sqrt{3}$]D.[-$\frac{2}{3}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,若$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°,且$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,則實(shí)數(shù)$\frac{m}{n}$的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前n項(xiàng)和${S_n}={(-1)^{n+1}}\frac{1}{2^n}$,如果存在正整數(shù)n,使得(p-an)(p-an+1)<0成立,則實(shí)數(shù)p的取值范圍是(-$\frac{3}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足:a1=1,an=$\left\{\begin{array}{l}{2{a}_{\frac{n}{2}}+1,n為偶數(shù)}\\{\frac{1}{2}+2{a}_{\frac{n-1}{2}},n為奇數(shù)}\end{array}\right.$,n=2,3,4,….
(1)求a2,a3,a4,a5的值;
(2)設(shè)bn=${a}_{{2}^{n-1}}$+1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項(xiàng)構(gòu)成等差數(shù)列?若存在,寫出這2m項(xiàng),并證明這2m項(xiàng)構(gòu)成等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}滿足a2=2,2an+1=an,則數(shù)列{an}的前6項(xiàng)和S6等于( 。
A.$\frac{63}{16}$B.$\frac{63}{12}$C.$\frac{63}{8}$D.$\frac{63}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow{{e}_{1}}$上的投影是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步練習(xí)冊答案