直線方程x-2y=4的截距式是
 
考點:直線的一般式方程
專題:直線與圓
分析:在直線方程x-2y=4的兩邊同除以4,整理可得截距式方程.
解答: 解:在直線方程x-2y=4的兩邊同除以4可得
x
4
-
y
2
=1
,
整理可得直線的截距式方程為:
x
4
+
y
-2
=1
,
故答案為:
x
4
+
y
-2
=1
點評:本題考查直線的截距式方程,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

用分析法證明:(
2
+1)2
17
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面ABCD是等腰梯形,側(cè)面PAD是正三角形,且CD=DA=AB=1,BC=PB2=PC2=2
(1)求證:PB⊥平面PCD;
(2)求PD與平面PAB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x
2
3

(1)求出函數(shù)的定義域
(2)判斷函數(shù)的奇偶性
(3)寫出函數(shù)的單調(diào)區(qū)間
(4)做出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論能成立的是( 。
A、sinα=
1
2
且cosα=
1
2
B、tanα=2且
cosα
sinα
=
1
3
C、tanα=1且cosα=
2
2
D、sinα=1且tanα•cosα=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點M是線段BC的中點,點A在直線BC外,
BC
2=16,|
AB
+
AC
|=|
AB
-
AC
|,則|
AM
|=(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標系O-xyz中,坐標原點為O,P點坐標為(x,y,z).
(Ⅰ)若點P在x軸上,且坐標滿足|2x-5|≤3,求點P到原點O的距離的最小值;
(Ⅱ)若點P到坐標原點O的距離為2
3
,求x+y+z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱柱中,底面是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂點D1在底面ABCD內(nèi)的射影恰好為C,
求證:AD1⊥BC,若DD1與AB所成的角為60°,求面ABC1D1和面ABCD的余弦函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知內(nèi)角A,B,C的對邊分別為a,b,c,且C=
1
2
A.
(1)若△ABC為銳角三角形,求
c
a
的取值范圍;
(2)若cosA=
1
8
,a+c=20,求b的值.

查看答案和解析>>

同步練習冊答案