用分析法證明:(
2
+1)2
17
5
3
考點(diǎn):反證法與放縮法
專題:證明題,分析法
分析:利用分析法的證明步驟,即可得出結(jié)論.
解答: 證明:要證明:(
2
+1)2
17
5
3

只要證明:3+2
2
867
25
,
只要證明:2
2
792
25
,
顯然成立,
∴(
2
+1)2
17
5
3
點(diǎn)評(píng):本題主要考查用分析法證明不等式,把證明不等式轉(zhuǎn)化為尋找使不等式成立的充分條件,直到使不等式成立的充分條件顯然已經(jīng)具備為止.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD⊥AB,
BC
=
3
BD
,|
AD
|=1,則
AC
AD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中小學(xué)校車安全引起社會(huì)的關(guān)注,為了徹底消除校車安全隱患,某市購進(jìn)了50臺(tái)完全相同的校車,準(zhǔn)備發(fā)放給10所學(xué)校,每所學(xué)校至少2臺(tái),則不同的發(fā)放方案種數(shù)為( 。
A、
C
9
41
B、
C
9
38
C、
C
9
40
D、
C
9
39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a=
2
,向量
m
=(-1,1),
n
=(cosBcosC,sinBsinC-
2
2
),且
m
n

(Ⅰ)求A;
(Ⅱ)當(dāng)sinB+cos(
12
-C)取得最大值時(shí),求B和b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=ax+1,f(x)=
2 x-1,0≤x≤2
-x 2,-2≤x≤0
,對(duì)?x1∈[-2,2],?x2∈[-2,2].,使g(x1)=f(x2)成立,則a的取值范圍是( 。
A、[-1,+∞)
B、[-1,1]
C、(0,1]
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3
tan10°+1
2cos20°sin10°
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-2)[x-(3a+1)<0]},B={x|
x-a
x-(a2+1)
<0}.
(Ⅰ)當(dāng)a=2時(shí),求集合A∪B;
(Ⅱ)若B⊆A成立的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:5sin90°-2cos0°+
3
tan180°+cos180°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線方程x-2y=4的截距式是
 

查看答案和解析>>

同步練習(xí)冊答案