10.(x+$\frac{2}{y}$-2)7的展開式中,不含y的各項系數(shù)之和為-1.

分析 先將問題轉(zhuǎn)化為二項展開式的各項系數(shù)和問題,再利用賦值法求出各項系數(shù)和.

解答 解:在(x+$\frac{2}{y}$-2)7的展開式中,不含y的各項系數(shù)之和,即(x-2)7的各項系數(shù)和,
令x=1,可得(x-2)7的各項系數(shù)和為(1-2)7=-1,
故答案為:-1.

點評 本題考查利用賦值法求展開式的各項系數(shù)和,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(要求寫出簡明過程,并用數(shù)字作答)有6名同學(xué)站成一排,求:
(1)甲不站排頭有多少種不同的排法;
(2)甲不站排頭,且乙不站排尾有多少種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)0≤α<2π,若sinα>$\sqrt{3}$cosα,則角α的取值范圍是(  )
A.$(\frac{π}{3},\frac{π}{2})$B.$(\frac{π}{3},π)$C.$(\frac{π}{3},\frac{4π}{3})$D.$(\frac{π}{3},\frac{2π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從2男3女共5名同學(xué)中任選2名(每名同學(xué)被選中的機會均等),這2名都是男生或都是女生的概率等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)向量$\overrightarrow a=(-1,3)$,$\overrightarrow b=(2,1)$,若($\overrightarrow{a}$+λ$\overrightarrow$)⊥($\overrightarrow{a}$-λ$\overrightarrow$)且λ>0,則實數(shù)λ=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,若A,B,C成等差數(shù)列,且b=1,則△ABC面積的最大值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x1,x2是函數(shù)f(x)=x2+ax+b(a<0,b>0)的兩個不同的零點,且x1,-2,x2成等比數(shù)列,若這三個數(shù)重新排序后成等差數(shù)列,則a+b的值等于( 。
A.1B.-1C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$,圓C的極坐標方程為ρ=8cosθ.
(1)求圓心C的直角坐標;
(2)若直線l與圓C相交于A,B兩點,點P的直角坐標為(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實數(shù)x,y滿足:x>0且x2-xy+2=0,則x+2y的最小值為( 。
A.4$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案