分析 (Ⅰ)(i)f(x)的定義域為{x|x>0},f′(x)=1+lnx,g′(x)=ax+1,當m=e時,f′(e)=1+lne=2,g′(e)=ae+1,由l1⊥l2,利用導數(shù)的幾何意義得f′(e)g′(e)=2(ae+1)=-1,由此能求出a.
(ii)f′(m)=1+lnm,g′(m)=am+1,由l1∥l2,得lnm=am在(0,+∞)上有解,從而a=$\frac{lnm}{m}$,令F(x)=$\frac{lnx}{x}$(x>0),由${F}^{'}(x)=\frac{1-lnx}{{x}^{2}}$=0,得x=e,利用導數(shù)性質(zhì)求出F(x)max=F(e)=$\frac{1}{e}$,由此能求出a的最大值.
(Ⅱ)h(x)=xlnx-$\frac{a}{2}{x}^{2}$-x+a,(x>0),h′(x)=lnx-ax,從而x1,x2是方程lnx-ax=0的兩個根,進而a=$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$,推導出$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$>$\frac{1+λ}{{x}_{1}+λ{x}_{2}}$,從而ln$\frac{{x}_{1}}{{x}_{2}}$<$\frac{(1+λ)({x}_{1}-{x}_{2})}{{x}_{1}+λ{x}_{2}}$,令t=$\frac{{x}_{1}}{{x}_{2}}$,則t∈(0,1),從而lnt<$\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立,令φ(t)=lnt-$\frac{(1+λ)(t-1)}{t+λ}$,則φ′(t)=$\frac{1}{t}-\frac{(1+λ)^{2}}{(t+λ)^{2}}$=$\frac{(t-1)(t-{λ}^{2})}{t(t+λ)^{2}}$,由此根據(jù)λ2≥1和λ2<1分類討論,利用導數(shù)性質(zhì)能求出λ的取值范圍.
解答 解:(Ⅰ)(i)∵函數(shù)f(x)=xlnx,∴f(x)的定義域為{x|x>0},f′(x)=1+lnx,
∵g(x)=$\frac{a}{2}{x^2}$+x-a(a∈R),∴g′(x)=ax+1,
當m=e時,f′(e)=1+lne=2,g′(e)=ae+1,
∵l1⊥l2,∴f′(e)g′(e)=2(ae+1)=-1,
解得a=-$\frac{3}{2e}$.
(ii)∵函數(shù)f(x)=xlnx,∴f(x)的定義域為{x|x>0},f′(x)=1+lnx,
∵g(x)=$\frac{a}{2}{x^2}$+x-a(a∈R),∴g′(x)=ax+1,
∴f′(m)=1+lnm,g′(m)=am+1,
∵l1∥l2,∴f′(m)=g′(m)在(0,+∞)上有解,
∴l(xiāng)nm=am在(0,+∞)上有解,
∵m>0,∴a=$\frac{lnm}{m}$,
令F(x)=$\frac{lnx}{x}$(x>0),則${F}^{'}(x)=\frac{1-lnx}{{x}^{2}}$=0,解得x=e,
當x∈(0,e)時,F(xiàn)′(x)>0,F(xiàn)(x)為增函數(shù),
當x∈(e,+∞)時,F(xiàn)′(x)<0,F(xiàn)(x)為減函數(shù),
∴F(x)max=F(e)=$\frac{1}{e}$,
∴a的最大值為$\frac{1}{e}$.
(Ⅱ)h(x)=xlnx-$\frac{a}{2}{x}^{2}$-x+a,(x>0),h′(x)=lnx-ax,
∵x1,x2為h(x)在其定義域內(nèi)的兩個不同的極值點,
∴x1,x2是方程lnx-ax=0的兩個根,即lnx1=ax1,lnx2=ax2,
兩式作差,并整理,得:a=$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$,
∵λ>0,0<x1<x2,
由λlnx2-λ>1-lnx1,得1+λ<lnx1+λlnx2,
則1+λ<a(x1+λx2),∴a>$\frac{1+λ}{{x}_{1}+λ{x}_{2}}$,∴$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$>$\frac{1+λ}{{x}_{1}+λ{x}_{2}}$,
∴l(xiāng)n$\frac{{x}_{1}}{{x}_{2}}$<$\frac{(1+λ)({x}_{1}-{x}_{2})}{{x}_{1}+λ{x}_{2}}$,
令t=$\frac{{x}_{1}}{{x}_{2}}$,則t∈(0,1),由題意知:
lnt<$\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立,
令φ(t)=lnt-$\frac{(1+λ)(t-1)}{t+λ}$,則φ′(t)=$\frac{1}{t}-\frac{(1+λ)^{2}}{(t+λ)^{2}}$=$\frac{(t-1)(t-{λ}^{2})}{t(t+λ)^{2}}$,
①當λ2≥1時,即λ≥1時,?t∈(0,1),φ′(t)>0,
∴φ(t)在(0,1)上單調(diào)遞增,
又φ(1)=0,則φ(t)<0在(0,1)上恒成立.
②當λ2<1,即0<λ<1時,t∈(0,λ2)時,φ′(t)>0,φ(t)在(0,λ2)上是增函數(shù);
當t∈(λ2,1)時,φ′(t)<0,φ(t)在(λ2,1)上是減函數(shù).
又φ(1)=0,∴φ(t)不恒小于0,不合題意.
綜上,λ的取值范圍是[1,+∞).
點評 本題考查導數(shù)的幾何意義、導數(shù)性質(zhì)、構(gòu)造法、函數(shù)性質(zhì)等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想,考查創(chuàng)新意識、應用意識,是中檔題.
科目:高中數(shù)學 來源:2016-2017學年河北省高二理上第一次月考數(shù)學試卷(解析版) 題型:選擇題
一個球體經(jīng)過切割后,剩下部分幾何體的三視圖如右圖所示,則剩下部分幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | 2-2i | D. | 2+2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都存在 | B. | $\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都不存在 | ||
C. | $\lim_{n→∞}{a_n}$存在,$\lim_{n→∞}{S_n}$不存在 | D. | $\lim_{n→∞}{a_n}$不存在,$\lim_{n→∞}{S_n}$存在 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com