6.求不等式(2x+1)2(x-3)(3x-2)3(x-4)≤0的解集.

分析 第一步:通過不等式的諸多性質(zhì)對不等式進(jìn)行移項,使得右側(cè)為0,(注意:一定要保證x前的系數(shù)為正數(shù)),第二步:將不等式號換成等號解出所有根,第三步:在數(shù)軸上從左到右依次標(biāo)出各根,第四步:畫穿根線:以數(shù)軸為標(biāo)準(zhǔn),從“最右根”的右上方穿過根,往左下畫線,然后又穿過“次右根”上去,一上一下依次穿過各根,第五步:觀察不等號,如果不等號為“>”,則取數(shù)軸上方,穿根線以內(nèi)的范圍;如果不等號為“<”則取數(shù)軸下方,穿根線以內(nèi)的范圍,x的次數(shù)若為偶數(shù)則不穿過,即奇過偶不過.

解答 解:(2x+1)2(x-3)(3x-2)3(x-4)≤0,
當(dāng)(2x+1)2(x-3)(3x-2)3(x-4)=0,
解得x=-$\frac{1}{2}$或x=$\frac{2}{3}$,或x=3,或x=4,
將各根-$\frac{1}{2}$、$\frac{2}{3}$、3、4依次標(biāo)在數(shù)軸上,
由圖象可知不等式的解集為為(-∞,$\frac{2}{3}$]∪[3,4].

點評 本題考查了高次不等式的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$|\begin{array}{l}{m}&{cos2x}\\{n}&{sin2x}\end{array}|$的圖象過點$(\frac{π}{12},\sqrt{3})$和點$(\frac{2π}{3},-2)$.
(1)求函數(shù)f(x)的最大值與最小值;
(2)將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個單位后,得到函數(shù)y=g(x)的圖象;已知點P(0,5),若函數(shù)y=g(x)的圖象上存在點Q,使得|PQ|=3,求函數(shù)y=g(x)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P(x0,y0)是雙曲線C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一點,F(xiàn)1,F(xiàn)2是C的兩個焦點,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,則x0的取值范圍是( 。
A.[-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞)D.(-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x,y滿足約束條件$\left\{\begin{array}{l}{y≥1}\\{2x-y-1≥0}\\{x+y-a≤0}\end{array}\right.$,且z=3x-2y+3的最小值為2,則實數(shù)a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知各項均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),若a2014=a2016,則a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,若向量$\overrightarrow{m}$滿足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow$|=1,則|$\overrightarrow{m}$|的最大值是( 。
A.2$\sqrt{3}$-1B.2$\sqrt{3}$+1C.4D.$\sqrt{6}$+$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求y=$\frac{{x}^{2}+7x+10}{x+1}$(x>-1)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=AC=$\sqrt{3}$,BC=3,AA1=5,$\overrightarrow{BD}$=$\frac{1}{3}\overrightarrow{BC}$,$\overrightarrow{{B}_{1}{D}_{1}}$=$\frac{1}{3}\overrightarrow{{B}_{1}{C}_{1}}$,$\overrightarrow{D{P}_{1}}$=$\frac{3}{5}\overrightarrow{D{D}_{1}}$,一光線從A射出,第一次射到平面BCC1B1上點P1,經(jīng)反射后第二次射到表面上點P2,依次下去,…,則P2P3=( 。
A.$\frac{\sqrt{10}}{6}$B.$\frac{\sqrt{10}}{4}$C.$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步練習(xí)冊答案